Loading…

Prediction and Evaluation of Machine Learning Algorithm for Prediction of Blood Transfusion during Cesarean Section and Analysis of Risk Factors of Hypothermia during Anesthesia Recovery

Objective. To explore the application of machine learning algorithm in the prediction and evaluation of cesarean section, predicting the amount of blood transfusion during cesarean section and to analyze the risk factors of hypothermia during anesthesia recovery. Methods. (1)Through the hospital ele...

Full description

Saved in:
Bibliographic Details
Published in:Computational and mathematical methods in medicine 2022-04, Vol.2022, p.8661324-9
Main Authors: Ren, Wei, Li, Danmei, Wang, Jia, Zhang, Jinxi, Fu, Zhongliang, Yao, Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objective. To explore the application of machine learning algorithm in the prediction and evaluation of cesarean section, predicting the amount of blood transfusion during cesarean section and to analyze the risk factors of hypothermia during anesthesia recovery. Methods. (1)Through the hospital electronic medical record of medical system, a total of 600 parturients who underwent cesarean section in our hospital from June 2019 to December 2020 were included. The maternal age, admission time, diagnosis, and other case data were recorded. The routine method of cesarean section was intraspinal anesthesia, and general anesthesia was only used for patients’ strong demand, taboo, or failure of intraspinal anesthesia. According to the standard of intraoperative bleeding, the patients were divided into two groups: the obvious bleeding group (MH group, N=154) and nonobvious hemorrhage group (NMH group, N=446). The preoperative, intraoperative, and postoperative indexes of parturients in the two groups were analyzed and compared. Then, the risk factors of intraoperative bleeding were screened by logistic regression analysis with the occurrence of obvious bleeding as the dependent variable and the factors in the univariate analysis as independent variables. In order to further predict intraoperative blood transfusion, the standard cases of recesarean section and variables with possible clinical significance were included in the prediction model. Logistic regression, XGB, and ANN3 machine learning algorithms were used to construct the prediction model of intraoperative blood transfusion. The area under ROC curve (AUROC), accuracy, recall rate, and F1 value were calculated and compared. (2) According to whether hypothermia occurred in the anesthesia recovery room, the patients were divided into two groups: the hypothermia group (N=244) and nonhypothermia group (N=356). The incidence of hypothermia was calculated, and the relevant clinical data were collected. On the basis of consulting the literatures, the factors probably related to hypothermia were collected and analyzed by univariate statistical analysis, and the statistically significant factors were analyzed by multifactor logistic regression analysis to screen the independent risk factors of hypothermia in anesthetic convalescent patients. Results. (1) First of all, we compared the basic data of the blood transfusion group and the nontransfusion group. The gestational age of the transfusion group was lower than t
ISSN:1748-670X
1748-6718
DOI:10.1155/2022/8661324