Loading…
Universality of High-Strength Tensors
A theorem due to Kazhdan and Ziegler implies that, by substituting linear forms for its variables, a homogeneous polynomial of sufficiently high strength specialises to any given polynomial of the same degree in a bounded number of variables. Using entirely different techniques, we extend this theor...
Saved in:
Published in: | Vietnam journal of mathematics 2022, Vol.50 (2), p.557-580 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A theorem due to Kazhdan and Ziegler implies that, by substituting linear forms for its variables, a homogeneous polynomial of sufficiently high strength specialises to any given polynomial of the same degree in a bounded number of variables. Using entirely different techniques, we extend this theorem to arbitrary polynomial functors. As a corollary of our work, we show that specialisation induces a quasi-order on elements in polynomial functors, and that among the elements with a dense orbit there are unique smallest and largest equivalence classes in this quasi-order. |
---|---|
ISSN: | 2305-221X 2305-2228 2305-2228 |
DOI: | 10.1007/s10013-021-00522-7 |