Loading…
Implant characteristics affect in vivo shoulder kinematics during multiplanar functional motions after reverse shoulder arthroplasty
The purpose of this study was to determine how implant characteristics affect in vivo shoulder kinematics after reverse shoulder arthroplasty (RSA). Kinematics of the affected upper limb were measured in 32 participants during five motions (scapular plane abduction, hand-to-head, hand-to-back, inter...
Saved in:
Published in: | Journal of biomechanics 2022-04, Vol.135, p.111050-111050, Article 111050 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The purpose of this study was to determine how implant characteristics affect in vivo shoulder kinematics after reverse shoulder arthroplasty (RSA). Kinematics of the affected upper limb were measured in 32 participants during five motions (scapular plane abduction, hand-to-head, hand-to-back, internal/external rotation at 90° abduction, and circumduction) using optical motion capture. Shoulder abduction, plane of elevation, and internal/external rotation range of motion (ROM), peak angles, and continuous kinematics waveforms were calculated for each motion. Multiple regression was used to identify associations between kinematics and implant characteristics of lateralization, humeral retroversion, glenosphere size, glenosphere tilt, glenoid eccentricity, and implant neck-shaft angle (135° or 145°). Less humeral retroversion was associated with greater shoulder rotation ROM (p = 0.036) and greater plane of elevation ROM (p = 0.024) during circumduction, while less eccentricity was associated with more posterior plane of elevation during hand-to-back (p = 0.021). The 145° implant was associated with greater internal/external shoulder rotation ROM (p |
---|---|
ISSN: | 0021-9290 1873-2380 |
DOI: | 10.1016/j.jbiomech.2022.111050 |