Loading…

Simultaneous analysis of antigen‐specific B and T cells after SARS‐CoV‐2 infection and vaccination

Conventional methods for quantifying and phenotyping antigen‐specific lymphocytes can rapidly deplete irreplaceable specimens. This is due to the fact that antigen‐specific T and B cells have historically been analyzed in independent assays each requiring millions of cells. A technique that facilita...

Full description

Saved in:
Bibliographic Details
Published in:Cytometry. Part A 2022-06, Vol.101 (6), p.474-482
Main Authors: Newell, Krista L., Waldran, Mitchell J., Thomas, Stephen J., Endy, Timothy P., Waickman, Adam T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Conventional methods for quantifying and phenotyping antigen‐specific lymphocytes can rapidly deplete irreplaceable specimens. This is due to the fact that antigen‐specific T and B cells have historically been analyzed in independent assays each requiring millions of cells. A technique that facilitates the simultaneous detection of antigen‐specific T and B cells would allow for more thorough immune profiling with significantly reduced sample requirements. To this end, we developed the B and T cell tandem lymphocyte evaluation (BATTLE) assay, which allows for the simultaneous identification of SARS‐CoV‐2 Spike reactive T and B cells using an activation induced marker (AIM) T cell assay and dual‐color B cell antigen probes. Using this assay, we demonstrate that antigen‐specific B and T cell subsets can be identified simultaneously using conventional flow cytometry platforms and provide insight into the differential effects of mRNA vaccination on B and T cell populations following natural SARS‐CoV‐2 infection.
ISSN:1552-4922
1552-4930
DOI:10.1002/cyto.a.24563