Loading…
The role of ciliopathy-associated type 3 adenylyl cyclase in infanticidal behavior in virgin adult male mice
Virgin adult male mice often display killing of alien newborns, defined as infanticide, and this behavior is dependent on olfactory signaling. Olfactory perception is achieved by the main olfactory system (MOS) or vomeronasal system (VNS). Although it has been established that the VNS is crucial for...
Saved in:
Published in: | iScience 2022-07, Vol.25 (7), p.104534-104534, Article 104534 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Virgin adult male mice often display killing of alien newborns, defined as infanticide, and this behavior is dependent on olfactory signaling. Olfactory perception is achieved by the main olfactory system (MOS) or vomeronasal system (VNS). Although it has been established that the VNS is crucial for infanticide in male mice, the role of the MOS in infanticide remains unknown. Herein, by producing lesions via ZnSO4 perfusion and N-methyl-D-aspartic acid stereotactic injection, we demonstrated that the main olfactory epithelium (MOE), anterior olfactory nucleus (AON), or ventromedial hypothalamus (VMH) is crucial for infanticide in adult males. By using CRISPR-Cas9 coupled with adeno-associated viruses to induce specific knockdown of type 3 adenylyl cyclase (AC3) in these tissues, we further demonstrated that AC3, a ciliopathy-associated protein, in the MOE and the expression of related proteins in the AON or VMH are necessary for infanticidal behavior in virgin adult male mice.
[Display omitted]
•MOE lesions and knockdown of AC3 in the MOE result in abnormal infanticidal behavior•The infanticidal behavior of male mice is impaired by lesioning of the AON or VMH•AC3 knockdown in the AON or VMH affects the infanticidal behavior of male mice
Biological sciences; Neuroscience; Behavioral neuroscience; Cellular neuroscience |
---|---|
ISSN: | 2589-0042 2589-0042 |
DOI: | 10.1016/j.isci.2022.104534 |