Loading…
Direct and indirect strategies of deep-learning-based attenuation correction for general purpose and dedicated cardiac SPECT
Purpose Deep-learning-based attenuation correction (AC) for SPECT includes both indirect and direct approaches. Indirect approaches generate attenuation maps (μ-maps) from emission images, while direct approaches predict AC images directly from non-attenuation-corrected (NAC) images without μ-maps....
Saved in:
Published in: | European journal of nuclear medicine and molecular imaging 2022-07, Vol.49 (9), p.3046-3060 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
Deep-learning-based attenuation correction (AC) for SPECT includes both indirect and direct approaches. Indirect approaches generate attenuation maps (μ-maps) from emission images, while direct approaches predict AC images directly from non-attenuation-corrected (NAC) images without μ-maps. For dedicated cardiac SPECT scanners with CZT detectors, indirect approaches are challenging due to the limited field-of-view (FOV). In this work, we aim to 1) first develop novel indirect approaches to improve the AC performance for dedicated SPECT; and 2) compare the AC performance between direct and indirect approaches for both general purpose and dedicated SPECT.
Methods
For dedicated SPECT, we developed strategies to predict truncated μ-maps from NAC images reconstructed with a small matrix, or full μ-maps from NAC images reconstructed with a large matrix using 270 anonymized clinical studies scanned on a GE Discovery NM/CT 570c SPECT/CT. For general purpose SPECT, we implemented direct and indirect approaches using 400 anonymized clinical studies scanned on a GE NM/CT 850c SPECT/CT. NAC images in both photopeak and scatter windows were input to predict μ-maps or AC images.
Results
For dedicated SPECT, the averaged normalized mean square error (NMSE) using our proposed strategies with full μ-maps was 1.20 ± 0.72% as compared to 2.21 ± 1.17% using the previous direct approaches. The polar map absolute percent error (APE) using our approaches was 3.24 ± 2.79% (
R
2
= 0.9499) as compared to 4.77 ± 3.96% (
R
2
= 0.9213) using direct approaches. For general purpose SPECT, the averaged NMSE of the predicted AC images using the direct approaches was 2.57 ± 1.06% as compared to 1.37 ± 1.16% using the indirect approaches.
Conclusions
We developed strategies of generating μ-maps for dedicated cardiac SPECT with small FOV. For both general purpose and dedicated SPECT, indirect approaches showed superior performance of AC than direct approaches. |
---|---|
ISSN: | 1619-7070 1619-7089 |
DOI: | 10.1007/s00259-022-05718-8 |