Loading…

New Framework for Dynamic Water Environmental Capacity Estimation Integrating the Hydro-Environmental Model and Load–Duration Curve Method—A Case Study in Data-Scarce Luanhe River Basin

A better understanding of river capacity for contaminants (i.e., water environmental capacity, WEC) is essential for the reasonable utilization of water resources, providing government’s with guidance about sewage discharge management, and allocating investments for pollutant reduction. This paper a...

Full description

Saved in:
Bibliographic Details
Published in:International journal of environmental research and public health 2022-07, Vol.19 (14), p.8389
Main Authors: Jin, Huiyu, Chen, Wanqi, Zhao, Zhenghong, Wang, Jiajia, Ma, Weichun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-3caefb34a289ed641abf3f0fa4126f887632cb7f56afb8c18c0294b87f1d8a9f3
cites cdi_FETCH-LOGICAL-c325t-3caefb34a289ed641abf3f0fa4126f887632cb7f56afb8c18c0294b87f1d8a9f3
container_end_page
container_issue 14
container_start_page 8389
container_title International journal of environmental research and public health
container_volume 19
creator Jin, Huiyu
Chen, Wanqi
Zhao, Zhenghong
Wang, Jiajia
Ma, Weichun
description A better understanding of river capacity for contaminants (i.e., water environmental capacity, WEC) is essential for the reasonable utilization of water resources, providing government’s with guidance about sewage discharge management, and allocating investments for pollutant reduction. This paper applied a new framework integrating a modified hydro-environmental model, Soil and Water Assessment Tool (SWAT) model, and load–duration curve (LDC) method for the dynamic estimation of the NH3-N WEC of the data-scarce Luanhe River basin in China. The impact mechanisms of hydrological and temperature conditions on WEC are discussed. We found that 77% of the WEC was concentrated in 40% hydrological guarantee flow rates. While the increasing flow velocity promoted the pollutant decay rate, it shortened its traveling time in streams, eventually reducing the river WEC. The results suggest that the integrated framework combined the merits of the traditional LDC method and the mechanism model. Thus, the integrated framework dynamically presents the WEC’s spatiotemporal distribution under different hydrological regimes with fewer data. It can also be applied in multi-segment rivers to help managers identify hot spots for fragile water environmental regions and periods at the basin scale.
doi_str_mv 10.3390/ijerph19148389
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9325059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2695287912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-3caefb34a289ed641abf3f0fa4126f887632cb7f56afb8c18c0294b87f1d8a9f3</originalsourceid><addsrcrecordid>eNpdks1uEzEQx1cIREvhytkSFy5b7PXGsS9IJUlppRQkCuK4mvWOE4ddO7W9qXLjHeB1eBmeBFepEOU0o5nf_OdDUxQvGT3lXNE3doNhu2aK1ZJL9ag4ZkLQshaUPf7HPyqexbihlMtaqKfFEZ9IKaqaHRe_PuAtOQ8w4K0P34jxgcz3DgaryVdIGMjC7WzwbkCXoCcz2IK2aU8WMdkBkvWOXLqEq5B9tyJpjeRi3wVfPqy78h32BFxHlh66399_zMdwqJ6NYYfkCtPa5_jPs9wiIrlOY7cn1pE5JCivNQSNZDmCy_qf7C7P9Q6idc-LJwb6iC_u7Unx5XzxeXZRLj--v5ydLUvNq0kquQY0La-hkgo7UTNoDTfUQM0qYaScCl7pdmomAkwrNZOaVqpu5dSwToIy_KR4e9Ddju2Anc5LBeibbcg3CPvGg20eZpxdNyu_a1TuTycqC7y-Fwj-ZsSYmsFGjX0PDv0Ym0qoSSWnilUZffUfuvFjcHm9O6qmjCrBMnV6oHTwMQY0f4dhtLn7jObhZ_A_P_iyGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694010961</pqid></control><display><type>article</type><title>New Framework for Dynamic Water Environmental Capacity Estimation Integrating the Hydro-Environmental Model and Load–Duration Curve Method—A Case Study in Data-Scarce Luanhe River Basin</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jin, Huiyu ; Chen, Wanqi ; Zhao, Zhenghong ; Wang, Jiajia ; Ma, Weichun</creator><creatorcontrib>Jin, Huiyu ; Chen, Wanqi ; Zhao, Zhenghong ; Wang, Jiajia ; Ma, Weichun</creatorcontrib><description>A better understanding of river capacity for contaminants (i.e., water environmental capacity, WEC) is essential for the reasonable utilization of water resources, providing government’s with guidance about sewage discharge management, and allocating investments for pollutant reduction. This paper applied a new framework integrating a modified hydro-environmental model, Soil and Water Assessment Tool (SWAT) model, and load–duration curve (LDC) method for the dynamic estimation of the NH3-N WEC of the data-scarce Luanhe River basin in China. The impact mechanisms of hydrological and temperature conditions on WEC are discussed. We found that 77% of the WEC was concentrated in 40% hydrological guarantee flow rates. While the increasing flow velocity promoted the pollutant decay rate, it shortened its traveling time in streams, eventually reducing the river WEC. The results suggest that the integrated framework combined the merits of the traditional LDC method and the mechanism model. Thus, the integrated framework dynamically presents the WEC’s spatiotemporal distribution under different hydrological regimes with fewer data. It can also be applied in multi-segment rivers to help managers identify hot spots for fragile water environmental regions and periods at the basin scale.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph19148389</identifier><identifier>PMID: 35886241</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Ammonia ; Case studies ; Contaminants ; Decay rate ; Developing countries ; Environmental modeling ; Environmental protection ; Flow velocity ; Hydrologic models ; Hydrologic regime ; Hydrology ; LDCs ; Load ; Methods ; Pollutants ; Pollution ; Pollution control ; River basins ; Rivers ; Sewage ; Soil contamination ; Soil water ; Spatial distribution ; Streams ; Temporal distribution ; Travel time ; Waste management ; Water pollution ; Water quality ; Water resources</subject><ispartof>International journal of environmental research and public health, 2022-07, Vol.19 (14), p.8389</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-3caefb34a289ed641abf3f0fa4126f887632cb7f56afb8c18c0294b87f1d8a9f3</citedby><cites>FETCH-LOGICAL-c325t-3caefb34a289ed641abf3f0fa4126f887632cb7f56afb8c18c0294b87f1d8a9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2694010961/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2694010961?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Jin, Huiyu</creatorcontrib><creatorcontrib>Chen, Wanqi</creatorcontrib><creatorcontrib>Zhao, Zhenghong</creatorcontrib><creatorcontrib>Wang, Jiajia</creatorcontrib><creatorcontrib>Ma, Weichun</creatorcontrib><title>New Framework for Dynamic Water Environmental Capacity Estimation Integrating the Hydro-Environmental Model and Load–Duration Curve Method—A Case Study in Data-Scarce Luanhe River Basin</title><title>International journal of environmental research and public health</title><description>A better understanding of river capacity for contaminants (i.e., water environmental capacity, WEC) is essential for the reasonable utilization of water resources, providing government’s with guidance about sewage discharge management, and allocating investments for pollutant reduction. This paper applied a new framework integrating a modified hydro-environmental model, Soil and Water Assessment Tool (SWAT) model, and load–duration curve (LDC) method for the dynamic estimation of the NH3-N WEC of the data-scarce Luanhe River basin in China. The impact mechanisms of hydrological and temperature conditions on WEC are discussed. We found that 77% of the WEC was concentrated in 40% hydrological guarantee flow rates. While the increasing flow velocity promoted the pollutant decay rate, it shortened its traveling time in streams, eventually reducing the river WEC. The results suggest that the integrated framework combined the merits of the traditional LDC method and the mechanism model. Thus, the integrated framework dynamically presents the WEC’s spatiotemporal distribution under different hydrological regimes with fewer data. It can also be applied in multi-segment rivers to help managers identify hot spots for fragile water environmental regions and periods at the basin scale.</description><subject>Ammonia</subject><subject>Case studies</subject><subject>Contaminants</subject><subject>Decay rate</subject><subject>Developing countries</subject><subject>Environmental modeling</subject><subject>Environmental protection</subject><subject>Flow velocity</subject><subject>Hydrologic models</subject><subject>Hydrologic regime</subject><subject>Hydrology</subject><subject>LDCs</subject><subject>Load</subject><subject>Methods</subject><subject>Pollutants</subject><subject>Pollution</subject><subject>Pollution control</subject><subject>River basins</subject><subject>Rivers</subject><subject>Sewage</subject><subject>Soil contamination</subject><subject>Soil water</subject><subject>Spatial distribution</subject><subject>Streams</subject><subject>Temporal distribution</subject><subject>Travel time</subject><subject>Waste management</subject><subject>Water pollution</subject><subject>Water quality</subject><subject>Water resources</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdks1uEzEQx1cIREvhytkSFy5b7PXGsS9IJUlppRQkCuK4mvWOE4ddO7W9qXLjHeB1eBmeBFepEOU0o5nf_OdDUxQvGT3lXNE3doNhu2aK1ZJL9ag4ZkLQshaUPf7HPyqexbihlMtaqKfFEZ9IKaqaHRe_PuAtOQ8w4K0P34jxgcz3DgaryVdIGMjC7WzwbkCXoCcz2IK2aU8WMdkBkvWOXLqEq5B9tyJpjeRi3wVfPqy78h32BFxHlh66399_zMdwqJ6NYYfkCtPa5_jPs9wiIrlOY7cn1pE5JCivNQSNZDmCy_qf7C7P9Q6idc-LJwb6iC_u7Unx5XzxeXZRLj--v5ydLUvNq0kquQY0La-hkgo7UTNoDTfUQM0qYaScCl7pdmomAkwrNZOaVqpu5dSwToIy_KR4e9Ddju2Anc5LBeibbcg3CPvGg20eZpxdNyu_a1TuTycqC7y-Fwj-ZsSYmsFGjX0PDv0Ym0qoSSWnilUZffUfuvFjcHm9O6qmjCrBMnV6oHTwMQY0f4dhtLn7jObhZ_A_P_iyGg</recordid><startdate>20220709</startdate><enddate>20220709</enddate><creator>Jin, Huiyu</creator><creator>Chen, Wanqi</creator><creator>Zhao, Zhenghong</creator><creator>Wang, Jiajia</creator><creator>Ma, Weichun</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220709</creationdate><title>New Framework for Dynamic Water Environmental Capacity Estimation Integrating the Hydro-Environmental Model and Load–Duration Curve Method—A Case Study in Data-Scarce Luanhe River Basin</title><author>Jin, Huiyu ; Chen, Wanqi ; Zhao, Zhenghong ; Wang, Jiajia ; Ma, Weichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-3caefb34a289ed641abf3f0fa4126f887632cb7f56afb8c18c0294b87f1d8a9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ammonia</topic><topic>Case studies</topic><topic>Contaminants</topic><topic>Decay rate</topic><topic>Developing countries</topic><topic>Environmental modeling</topic><topic>Environmental protection</topic><topic>Flow velocity</topic><topic>Hydrologic models</topic><topic>Hydrologic regime</topic><topic>Hydrology</topic><topic>LDCs</topic><topic>Load</topic><topic>Methods</topic><topic>Pollutants</topic><topic>Pollution</topic><topic>Pollution control</topic><topic>River basins</topic><topic>Rivers</topic><topic>Sewage</topic><topic>Soil contamination</topic><topic>Soil water</topic><topic>Spatial distribution</topic><topic>Streams</topic><topic>Temporal distribution</topic><topic>Travel time</topic><topic>Waste management</topic><topic>Water pollution</topic><topic>Water quality</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Huiyu</creatorcontrib><creatorcontrib>Chen, Wanqi</creatorcontrib><creatorcontrib>Zhao, Zhenghong</creatorcontrib><creatorcontrib>Wang, Jiajia</creatorcontrib><creatorcontrib>Ma, Weichun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Huiyu</au><au>Chen, Wanqi</au><au>Zhao, Zhenghong</au><au>Wang, Jiajia</au><au>Ma, Weichun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Framework for Dynamic Water Environmental Capacity Estimation Integrating the Hydro-Environmental Model and Load–Duration Curve Method—A Case Study in Data-Scarce Luanhe River Basin</atitle><jtitle>International journal of environmental research and public health</jtitle><date>2022-07-09</date><risdate>2022</risdate><volume>19</volume><issue>14</issue><spage>8389</spage><pages>8389-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>A better understanding of river capacity for contaminants (i.e., water environmental capacity, WEC) is essential for the reasonable utilization of water resources, providing government’s with guidance about sewage discharge management, and allocating investments for pollutant reduction. This paper applied a new framework integrating a modified hydro-environmental model, Soil and Water Assessment Tool (SWAT) model, and load–duration curve (LDC) method for the dynamic estimation of the NH3-N WEC of the data-scarce Luanhe River basin in China. The impact mechanisms of hydrological and temperature conditions on WEC are discussed. We found that 77% of the WEC was concentrated in 40% hydrological guarantee flow rates. While the increasing flow velocity promoted the pollutant decay rate, it shortened its traveling time in streams, eventually reducing the river WEC. The results suggest that the integrated framework combined the merits of the traditional LDC method and the mechanism model. Thus, the integrated framework dynamically presents the WEC’s spatiotemporal distribution under different hydrological regimes with fewer data. It can also be applied in multi-segment rivers to help managers identify hot spots for fragile water environmental regions and periods at the basin scale.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35886241</pmid><doi>10.3390/ijerph19148389</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1660-4601
ispartof International journal of environmental research and public health, 2022-07, Vol.19 (14), p.8389
issn 1660-4601
1661-7827
1660-4601
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9325059
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central; Free Full-Text Journals in Chemistry
subjects Ammonia
Case studies
Contaminants
Decay rate
Developing countries
Environmental modeling
Environmental protection
Flow velocity
Hydrologic models
Hydrologic regime
Hydrology
LDCs
Load
Methods
Pollutants
Pollution
Pollution control
River basins
Rivers
Sewage
Soil contamination
Soil water
Spatial distribution
Streams
Temporal distribution
Travel time
Waste management
Water pollution
Water quality
Water resources
title New Framework for Dynamic Water Environmental Capacity Estimation Integrating the Hydro-Environmental Model and Load–Duration Curve Method—A Case Study in Data-Scarce Luanhe River Basin
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Framework%20for%20Dynamic%20Water%20Environmental%20Capacity%20Estimation%20Integrating%20the%20Hydro-Environmental%20Model%20and%20Load%E2%80%93Duration%20Curve%20Method%E2%80%94A%20Case%20Study%20in%20Data-Scarce%20Luanhe%20River%20Basin&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Jin,%20Huiyu&rft.date=2022-07-09&rft.volume=19&rft.issue=14&rft.spage=8389&rft.pages=8389-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph19148389&rft_dat=%3Cproquest_pubme%3E2695287912%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-3caefb34a289ed641abf3f0fa4126f887632cb7f56afb8c18c0294b87f1d8a9f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2694010961&rft_id=info:pmid/35886241&rfr_iscdi=true