Loading…
Phylogenomic analyses in Phrymaceae reveal extensive gene tree discordance in relationships among major clades
Premise Phylogenomic datasets using genomes and transcriptomes provide rich opportunities beyond resolving bifurcating phylogenetic relationships. Monkeyflower (Phrymaceae) is a model system for evolutionary ecology. However, it lacks a well‐supported phylogeny as a basis for a stable taxonomy and f...
Saved in:
Published in: | American journal of botany 2022-06, Vol.109 (6), p.1035-1046 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Premise
Phylogenomic datasets using genomes and transcriptomes provide rich opportunities beyond resolving bifurcating phylogenetic relationships. Monkeyflower (Phrymaceae) is a model system for evolutionary ecology. However, it lacks a well‐supported phylogeny as a basis for a stable taxonomy and for macroevolutionary comparisons.
Methods
We sampled 24 genomes and transcriptomes in Phrymaceae and closely related families, including eight newly sequenced transcriptomes. We reconstructed the phylogeny using IQ‐TREE and ASTRAL, evaluated gene tree discordance using PhyParts, Quartet Sampling, and a cloudogram, and carried out reticulation analyses using PhyloNet and HyDe. We searched for whole genome duplication (WGD) events using chromosome numbers, synonymous distances, and gene duplication events as evidence.
Results
Most gene trees support the monophyly of Phrymaceae and each of its tribes. Most gene trees also support tribe Mimuleae being sister to Phrymeae + Diplaceae + Leucocarpeae, with extensive gene tree discordance among the latter three. Despite the discordance, the monophyly of Mimulus s.l. is rejected, and no individual reticulation event among the Phrymaceae tribes is well‐supported. Reticulation likely occurred among Erythranthe bicolor and closely related species. No ancient WGD was detected in Phrymaceae. Instead, small‐scale duplications are among potential drivers of macroevolutionary diversification of Phrymaceae.
Conclusions
We show that analysis of reticulate evolution is sensitive to taxon sampling and methods used. We also demonstrate that phylogenomic datasets using genomes and transcriptomes present rich opportunities to investigate gene family evolution and genome duplication events involved in lineage diversification and adaptation. |
---|---|
ISSN: | 0002-9122 1537-2197 |
DOI: | 10.1002/ajb2.1860 |