Loading…
Through-skull brain imaging in vivo at visible wavelengths via dimensionality reduction adaptive-optical microscopy
Compensation of sample-induced optical aberrations is crucial for visualizing microscopic structures deep within biological tissues. However, strong multiple scattering poses a fundamental limitation for identifying and correcting the tissue-induced aberrations. Here, we introduce a label-free deep-...
Saved in:
Published in: | Science advances 2022-07, Vol.8 (30), p.eabo4366-eabo4366 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Compensation of sample-induced optical aberrations is crucial for visualizing microscopic structures deep within biological tissues. However, strong multiple scattering poses a fundamental limitation for identifying and correcting the tissue-induced aberrations. Here, we introduce a label-free deep-tissue imaging technique termed dimensionality reduction adaptive-optical microscopy (DReAM) to selectively attenuate multiple scattering. We established a theoretical framework in which dimensionality reduction of a time-gated reflection matrix can attenuate uncorrelated multiple scattering while retaining a single-scattering signal with a strong wave correlation, irrespective of sample-induced aberrations. We performed mouse brain imaging in vivo through the intact skull with the probe beam at visible wavelengths. Despite the strong scattering and aberrations, DReAM offered a 17-fold enhancement of single scattering–to–multiple scattering ratio and provided high-contrast images of neural fibers in the brain cortex with the diffraction-limited spatial resolution of 412 nanometers and a 33-fold enhanced Strehl ratio.
Deep imaging based on wave correlation is used to attenuate multiple scattering and visualize mice brains through intact skulls. |
---|---|
ISSN: | 2375-2548 2375-2548 |
DOI: | 10.1126/sciadv.abo4366 |