Loading…

Optimizing experimental design in neutron reflectometry

Using the Fisher information (FI), the design of neutron reflectometry experiments can be optimized, leading to greater confidence in parameters of interest and better use of experimental time [Durant, Wilkins, Butler & Cooper (2021). J. Appl. Cryst.54, 1100–1110]. In this work, the FI is utiliz...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied crystallography 2022-08, Vol.55 (4), p.769-781
Main Authors: Durant, James H., Wilkins, Lucas, Cooper, Joshaniel F. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using the Fisher information (FI), the design of neutron reflectometry experiments can be optimized, leading to greater confidence in parameters of interest and better use of experimental time [Durant, Wilkins, Butler & Cooper (2021). J. Appl. Cryst.54, 1100–1110]. In this work, the FI is utilized in optimizing the design of a wide range of reflectometry experiments. Two lipid bilayer systems are investigated to determine the optimal choice of measurement angles and liquid contrasts, in addition to the ratio of the total counting time that should be spent measuring each condition. The reduction in parameter uncertainties with the addition of underlayers to these systems is then quantified, using the FI, and validated through the use of experiment simulation and Bayesian sampling methods. For a `one‐shot' measurement of a degrading lipid monolayer, it is shown that the common practice of measuring null‐reflecting water is indeed optimal, but that the optimal measurement angle is dependent on the deuteration state of the monolayer. Finally, the framework is used to demonstrate the feasibility of measuring magnetic signals as small as 0.01 μB per atom in layers only 20 Å thick, given the appropriate experimental design, and that the time to reach a given level of confidence in the small magnetic moment is quantifiable. An approach for optimal experimental design of neutron reflectivity experiments using metrics derived from the Fisher information is presented. This is demonstrated on a range of systems including lipid bilayers and magnetic heterostructures, and it is shown that small (or large) changes to the experimental setup can result in drastically reduced experimental count times.
ISSN:1600-5767
0021-8898
1600-5767
DOI:10.1107/S1600576722003831