Loading…
Interferon-β regulates proresolving lipids to promote the resolution of acute airway inflammation
Aberrant immune responses, including hyperresponsiveness to Toll-like receptor (TLR) ligands, underlie acute respiratory distress syndrome (ARDS). Type I interferons confer antiviral activities and could also regulate the inflammatory response, whereas little is known about their actions to resolve...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2022-08, Vol.119 (31), p.1-e2201146119 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aberrant immune responses, including hyperresponsiveness to Toll-like receptor (TLR) ligands, underlie acute respiratory distress syndrome (ARDS). Type I interferons confer antiviral activities and could also regulate the inflammatory response, whereas little is known about their actions to resolve aberrant inflammation. Here we report that interferon-β (IFN-β) exerts partially overlapping, but also cooperative actions with aspirin-triggered 15-epi-lipoxin A
4
(15-epi-LXA
4
) and 17-epi-resolvin D1 to counter TLR9-generated cues to regulate neutrophil apoptosis and phagocytosis in human neutrophils. In mice, TLR9 activation impairs bacterial clearance, prolongs
Escherichia coli
–evoked lung injury, and suppresses production of IFN-β and the proresolving lipid mediators 15-epi-LXA
4
and resolvin D1 (RvD1) in the lung. Neutralization of endogenous IFN-β delays pulmonary clearance of
E. coli
and aggravates mucosal injury. Conversely, treatment of mice with IFN-β accelerates clearance of bacteria, restores neutrophil phagocytosis, promotes neutrophil apoptosis and efferocytosis, and accelerates resolution of airway inflammation with concomitant increases in 15-epi-LXA
4
and RvD1 production in the lungs. Pharmacological blockade of the lipoxin receptor ALX/FPR2 partially prevents IFN-β–mediated resolution. These findings point to a pivotal role of IFN-β in orchestrating timely resolution of neutrophil and TLR9 activation–driven airway inflammation and uncover an IFN-β–initiated resolution program, activation of an ALX/FPR2-centered, proresolving lipids-mediated circuit, for ARDS. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.2201146119 |