Loading…
Implications of Anion Structure on Physicochemical Properties of DBU-Based Protic Ionic Liquids
Protic ionic liquids (PILs) are potential candidates as electrolyte components in energy storage devices. When replacing flammable and volatile organic solvents, PILs are expected to improve the safety and performance of electrochemical devices. Considering their technical application, a challenging...
Saved in:
Published in: | The journal of physical chemistry. B 2022-09, Vol.126 (36), p.7006-7014 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Protic ionic liquids (PILs) are potential candidates
as electrolyte
components in energy storage devices. When replacing flammable and
volatile organic solvents, PILs are expected to improve the safety
and performance of electrochemical devices. Considering their technical
application, a challenging task is the understanding of the key factors
governing their intermolecular interactions and physicochemical properties.
The present work intends to investigate the effects of the structural
features on the properties of a promising PIL based on the 1,8-diazabicyclo[5.4.0]undec-7-ene
(DBUH
+
) cation and the (trifluoromethanesulfonyl)(nonafluorobutanesulfonyl)imide
(IM14
–
) anion, the latter being a remarkably large
anion with an uneven distribution of the C–F pool between the
two sides of the sulfonylimide moieties. For comparison purposes,
the experimental investigations were extended to PILs composed of
the same DBU-based cation and the trifluoromethanesulfonate
(TFO
–
) or bis(trifluoromethanesulfonyl)imide
(TFSI
–
) anion. The combined use of multiple NMR
methods, thermal analyses, density, viscosity, and conductivity measurements
provides a deep characterization of the PILs, unveiling peculiar behaviors
in DBUH-IM14, which cannot be predicted solely on the basis of differences
between aqueous p
K
a
values of the protonated
base and the acid (Δp
K
a
). Interestingly,
the thermal and electrochemical properties of DBUH-IM14 turn out to
be markedly governed by the size and asymmetric nature of the anion.
This observation highlights that the structural features of the precursors
are an important tool to tailor the PIL’s properties according
to the specific application. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/acs.jpcb.2c02789 |