Loading…

CRISPR-Guided Proximity Labeling of RNA–Protein Interactions

Proximity labeling employs modified biotin ligases or peroxidases that produce reactive radicals to covalently label proximate proteins with biotin in living cells. The resulting biotinylated proteins can then be isolated and identified. A combination of programmable DNA targeting and proximity labe...

Full description

Saved in:
Bibliographic Details
Published in:Genes 2022-08, Vol.13 (9), p.1549
Main Authors: Lu, Mingxing, Wang, Zuowei, Wang, Yixiu, Ren, Bingbing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Proximity labeling employs modified biotin ligases or peroxidases that produce reactive radicals to covalently label proximate proteins with biotin in living cells. The resulting biotinylated proteins can then be isolated and identified. A combination of programmable DNA targeting and proximity labeling that maps proteomic landscape at DNA elements with dCas9-APEX2 has been established in living cells. However, defining interactome at RNA elements has lagged behind. In combination with RNA-targeting CRISPR-Cas13, proximity labeling can also be used to identify proteins that interact with specific RNA elements in living cells. From this viewpoint, we briefly summarize the latest advances in CRISPR-guided proximity labeling in studying RNA–protein interactions, and we propose applying the most recent engineered proximity-labeling enzymes to study RNA-centric interactions in the future.
ISSN:2073-4425
2073-4425
DOI:10.3390/genes13091549