Loading…

MMDCP: Multi-Modal Dental Caries Prediction for Decision Support System Using Deep Learning

In recent years, healthcare has gained unprecedented attention from researchers in the field of Human health science and technology. Oral health, a subdomain of healthcare described as being very complex, is threatened by diseases like dental caries, gum disease, oral cancer, etc. The critical point...

Full description

Saved in:
Bibliographic Details
Published in:International journal of environmental research and public health 2022-09, Vol.19 (17), p.10928
Main Authors: Ngnamsie Njimbouom, Soualihou, Lee, Kwonwoo, Kim, Jeong-Dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, healthcare has gained unprecedented attention from researchers in the field of Human health science and technology. Oral health, a subdomain of healthcare described as being very complex, is threatened by diseases like dental caries, gum disease, oral cancer, etc. The critical point is to propose an identification mechanism to prevent the population from being affected by these diseases. The large amount of online data allows scholars to perform tremendous research on health conditions, specifically oral health. Regardless of the high-performing dental consultation tools available in current healthcare, computer-based technology has shown the ability to complete some tasks in less time and cost less than when using similar healthcare tools to perform the same type of work. Machine learning has displayed a wide variety of advantages in oral healthcare, such as predicting dental caries in the population. Compared to the standard dental caries prediction previously proposed, this work emphasizes the importance of using multiple data sources, referred to as multi-modality, to extract more features and obtain accurate performances. The proposed prediction model constructed using multi-modal data demonstrated promising performances with an accuracy of 90%, F1-score of 89%, a recall of 90%, and a precision of 89%.
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph191710928