Loading…

PGM3 regulates beta-catenin activity to promote colorectal cancer cell progression

The hexosamine biosynthetic pathway (HBP) is connected to abnormal N- and O-linked protein glycosylation in cancer, which performs critical roles in tumorigenesis. However, the regulation mechanisms of HBP and its role in colorectal cancer (CRC) progression remain unexplained. This study analyzed th...

Full description

Saved in:
Bibliographic Details
Published in:Experimental biology and medicine (Maywood, N.J.) N.J.), 2022-09, Vol.247 (17), p.1518-1528
Main Authors: Zhang, Nan, Liu, Si, Xu, Junxuan, Ning, Tingting, Xie, Sian, Min, Li, Zhu, Shengquan, Zhang, Shutian, Zhu, Shengtao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The hexosamine biosynthetic pathway (HBP) is connected to abnormal N- and O-linked protein glycosylation in cancer, which performs critical roles in tumorigenesis. However, the regulation mechanisms of HBP and its role in colorectal cancer (CRC) progression remain unexplained. This study analyzed the expression level of phosphoglucomutase 3 (PGM3), a key enzyme in HBP, and identified its function in CRC cell lines. Analysis of publicly available CRC microarray data determined that PGM3 is upregulated in CRC tumor tissues. Furthermore, functional experiments emphasized the significant roles of PGM3 in facilitating CRC cell proliferation and migration. Mechanistically, we demonstrated that the activity of β-catenin in CRC was maintained by PGM3-mediated O-GlcNAcylation. PGM3 knockdown or inhibition of O-GlcNAc transferase decreased β-catenin activity and the expression levels of its downstream targets. Collectively, our findings indicate that PGM3 exhibits tumor-promoting roles by elevating O-GlcNAcylation level and maintaining β-catenin activity, and might serve as a prognostic biomarker and treatment target in CRC.
ISSN:1535-3702
1535-3699
DOI:10.1177/15353702221101810