Loading…
A performance comparison of convolutional neural network‐based image denoising methods: The effect of loss functions on low‐dose CT images
Purpose Convolutional neural network (CNN)‐based image denoising techniques have shown promising results in low‐dose CT denoising. However, CNN often introduces blurring in denoised images when trained with a widely used pixel‐level loss function. Perceptual loss and adversarial loss have been propo...
Saved in:
Published in: | Medical physics (Lancaster) 2019-09, Vol.46 (9), p.3906-3923 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
Convolutional neural network (CNN)‐based image denoising techniques have shown promising results in low‐dose CT denoising. However, CNN often introduces blurring in denoised images when trained with a widely used pixel‐level loss function. Perceptual loss and adversarial loss have been proposed recently to further improve the image denoising performance. In this paper, we investigate the effect of different loss functions on image denoising performance using task‐based image quality assessment methods for various signals and dose levels.
Methods
We used a modified version of U‐net that was effective at reducing the correlated noise in CT images. The loss functions used for comparison were two pixel‐level losses (i.e., the mean‐squared error and the mean absolute error), Visual Geometry Group network‐based perceptual loss (VGG loss), adversarial loss used to train the Wasserstein generative adversarial network with gradient penalty (WGAN‐GP), and their weighted summation. Each image denoising method was applied to reconstructed images and sinogram images independently and validated using the extended cardiac‐torso (XCAT) simulation and Mayo Clinic datasets. In the XCAT simulation, we generated fan‐beam CT datasets with four different dose levels (25%, 50%, 75%, and 100% of a normal‐dose level) using 10 XCAT phantoms and inserted signals in a test set. The signals had two different shapes (spherical and spiculated), sizes (4 and 12 mm), and contrast levels (60 and 160 HU). To evaluate signal detectability, we used a detection task SNR (tSNR) calculated from a non‐prewhitening model observer with an eye filter. We also measured the noise power spectrum (NPS) and modulation transfer function (MTF) to compare the noise and signal transfer properties.
Results
Compared to CNNs without VGG loss, VGG‐loss‐based CNNs achieved a more similar tSNR to that of the normal‐dose CT for all signals at different dose levels except for a small signal at the 25% dose level. For a low‐contrast signal at 25% or 50% dose, adding other losses to the VGG loss showed more improved performance than only using VGG loss. The NPS shapes from VGG‐loss‐based CNN closely matched that of normal‐dose CT images while CNN without VGG loss overly reduced the mid‐high‐frequency noise power at all dose levels. MTF also showed VGG‐loss‐based CNN with better‐preserved high resolution for all dose and contrast levels. It is also observed that additional WGAN‐GP loss helps improve the noise a |
---|---|
ISSN: | 0094-2405 2473-4209 2473-4209 |
DOI: | 10.1002/mp.13713 |