Loading…
Use of a Doubly Robust Machine-Learning–Based Approach to Evaluate Body Mass Index as a Modifier of the Association Between Fruit and Vegetable Intake and Preeclampsia
Abstract The Dietary Guidelines for Americans rely on summaries of the effect of dietary pattern on disease risk, independent of other population characteristics. We explored the modifying effect of prepregnancy body mass index (BMI; weight (kg)/height (m)2) on the relationship between fruit and veg...
Saved in:
Published in: | American journal of epidemiology 2022-07, Vol.191 (8), p.1396-1406 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
The Dietary Guidelines for Americans rely on summaries of the effect of dietary pattern on disease risk, independent of other population characteristics. We explored the modifying effect of prepregnancy body mass index (BMI; weight (kg)/height (m)2) on the relationship between fruit and vegetable density (cup-equivalents/1,000 kcal) and preeclampsia using data from a pregnancy cohort study conducted at 8 US medical centers (n = 9,412; 2010–2013). Usual daily periconceptional intake of total fruits and total vegetables was estimated from a food frequency questionnaire. We quantified the effects of diets with a high density of fruits (≥1.2 cups/1,000 kcal/day vs. |
---|---|
ISSN: | 0002-9262 1476-6256 |
DOI: | 10.1093/aje/kwac062 |