Loading…
A mathematical model of coronavirus transmission by using the heuristic computing neural networks
In this study, the nonlinear mathematical model of COVID-19 is investigated by stochastic solver using the scaled conjugate gradient neural networks (SCGNNs). The nonlinear mathematical model of COVID-19 is represented by coupled system of ordinary differential equations and is studied for three dif...
Saved in:
Published in: | Engineering analysis with boundary elements 2023-01, Vol.146, p.473-482 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, the nonlinear mathematical model of COVID-19 is investigated by stochastic solver using the scaled conjugate gradient neural networks (SCGNNs). The nonlinear mathematical model of COVID-19 is represented by coupled system of ordinary differential equations and is studied for three different cases of initial conditions with suitable parametric values. This model is studied subject to seven class of human population N(t) and individuals are categorized as: susceptible S(t), exposed E(t), quarantined Q(t), asymptotically diseased IA(t), symptomatic diseased IS(t) and finally the persons removed from COVID-19 and are denoted by R(t). The stochastic numerical computing SCGNNs approach will be used to examine the numerical performance of nonlinear mathematical model of COVID-19. The stochastic SCGNNs approach is based on three factors by using procedure of verification, sample statistics, testing and training. For this purpose, large portion of data is considered, i.e., 70%, 16%, 14% for training, testing and validation, respectively. The efficiency, reliability and authenticity of stochastic numerical SCGNNs approach are analysed graphically in terms of error histograms, mean square error, correlation, regression and finally further endorsed by graphical illustrations for absolute errors in the range of 10−05 to 10−07 for each scenario of the system model. |
---|---|
ISSN: | 0955-7997 1873-197X 0955-7997 |
DOI: | 10.1016/j.enganabound.2022.10.033 |