Loading…
Theophylline-Loaded Pectin/Chitosan Hydrochloride Submicron Particles Prepared by Spray Drying with a Continuous Feeding Ultrasonic Atomizer
Pectin/chitosan hydrochloride (CHC) particles containing theophylline were prepared by a spray-drying apparatus coupled with a continuous feeding ultrasonic atomizer and a heating column. The formation of the submicron particles was investigated at various compositions of pectin solutions added with...
Saved in:
Published in: | Polymers 2022-10, Vol.14 (21), p.4538 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pectin/chitosan hydrochloride (CHC) particles containing theophylline were prepared by a spray-drying apparatus coupled with a continuous feeding ultrasonic atomizer and a heating column. The formation of the submicron particles was investigated at various compositions of pectin solutions added with a chitosan hydrochloride or calcium chloride solution as a crosslinking agent. Scanning electron microscopic (SEM) images showed the pectin/chitosan hydrochloride particles had spherical and smooth surfaces. Depending on the feeding concentrations, the produced particles had diameters in the range of 300 to 800 nm with a narrow size distribution. Furthermore, the theophylline (TH)-loaded pectin/CHC particles were also prepared by the same apparatus. The TH release from the submicron particles in phosphate-buffered saline at 37 °C was monitored in real-time by a UV-Visible spectrophotometer. The Ritger–Peppas model could well describe the TH release profiles. All the diffusional exponents (n) of the release systems were greater than 0.7; thus, the transport mechanism was not a simple Fickian diffusion. Particularly, the n value was 1.14 for the TH-loaded particles at a pectin/CHC weight ratio of 5/2, which was very close to the zero-order drug delivery (n = 1). Therefore, the constant drug-release rate could be achieved by using the spray-dried pectin/CHC particles as the drug carrier. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym14214538 |