Loading…

Theophylline-Loaded Pectin/Chitosan Hydrochloride Submicron Particles Prepared by Spray Drying with a Continuous Feeding Ultrasonic Atomizer

Pectin/chitosan hydrochloride (CHC) particles containing theophylline were prepared by a spray-drying apparatus coupled with a continuous feeding ultrasonic atomizer and a heating column. The formation of the submicron particles was investigated at various compositions of pectin solutions added with...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2022-10, Vol.14 (21), p.4538
Main Authors: Cheng, Kuo-Chung, Hu, Chia-Chien, Li, Chih-Ying, Li, Shih-Chi, Cai, Zhi-Wei, Wei, Yang, Don, Trong-Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pectin/chitosan hydrochloride (CHC) particles containing theophylline were prepared by a spray-drying apparatus coupled with a continuous feeding ultrasonic atomizer and a heating column. The formation of the submicron particles was investigated at various compositions of pectin solutions added with a chitosan hydrochloride or calcium chloride solution as a crosslinking agent. Scanning electron microscopic (SEM) images showed the pectin/chitosan hydrochloride particles had spherical and smooth surfaces. Depending on the feeding concentrations, the produced particles had diameters in the range of 300 to 800 nm with a narrow size distribution. Furthermore, the theophylline (TH)-loaded pectin/CHC particles were also prepared by the same apparatus. The TH release from the submicron particles in phosphate-buffered saline at 37 °C was monitored in real-time by a UV-Visible spectrophotometer. The Ritger–Peppas model could well describe the TH release profiles. All the diffusional exponents (n) of the release systems were greater than 0.7; thus, the transport mechanism was not a simple Fickian diffusion. Particularly, the n value was 1.14 for the TH-loaded particles at a pectin/CHC weight ratio of 5/2, which was very close to the zero-order drug delivery (n = 1). Therefore, the constant drug-release rate could be achieved by using the spray-dried pectin/CHC particles as the drug carrier.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym14214538