Loading…
Risk prediction with imperfect survival outcome information from electronic health records
Readily available proxies for the time of disease onset such as the time of the first diagnostic code can lead to substantial risk prediction error if performing analyses based on poor proxies. Due to the lack of detailed documentation and labor intensiveness of manual annotation, it is often only f...
Saved in:
Published in: | Biometrics 2023-03, Vol.79 (1), p.190-202 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Readily available proxies for the time of disease onset such as the time of the first diagnostic code can lead to substantial risk prediction error if performing analyses based on poor proxies. Due to the lack of detailed documentation and labor intensiveness of manual annotation, it is often only feasible to ascertain for a small subset the current status of the disease by a follow‐up time rather than the exact time. In this paper, we aim to develop risk prediction models for the onset time efficiently leveraging both a small number of labels on the current status and a large number of unlabeled observations on imperfect proxies. Under a semiparametric transformation model for onset and a highly flexible measurement error model for proxy onset time, we propose the semisupervised risk prediction method by combining information from proxies and limited labels efficiently. From an initially estimator solely based on the labeled subset, we perform a one‐step correction with the full data augmenting against a mean zero rank correlation score derived from the proxies. We establish the consistency and asymptotic normality of the proposed semisupervised estimator and provide a resampling procedure for interval estimation. Simulation studies demonstrate that the proposed estimator performs well in a finite sample. We illustrate the proposed estimator by developing a genetic risk prediction model for obesity using data from Mass General Brigham Healthcare Biobank. |
---|---|
ISSN: | 0006-341X 1541-0420 |
DOI: | 10.1111/biom.13599 |