Loading…
Ribosome Stalling of N‑Linked Glycoproteins in Cell-Free Extracts
Ribosome display is a powerful in vitro method for selection and directed evolution of proteins expressed from combinatorial libraries. However, the ability to display proteins with complex post-translational modifications such as glycosylation is limited. To address this gap, we developed a set of...
Saved in:
Published in: | ACS synthetic biology 2022-12, Vol.11 (12), p.3892-3899 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ribosome display is a powerful in vitro method for selection and directed evolution of proteins expressed from combinatorial libraries. However, the ability to display proteins with complex post-translational modifications such as glycosylation is limited. To address this gap, we developed a set of complementary methods for producing stalled ribosome complexes that displayed asparagine-linked (N-linked) glycoproteins in conformations amenable to downstream functional and glycostructural interrogation. The ability to generate glycosylated ribosome–nascent chain (glycoRNC) complexes was enabled by integrating SecM-mediated translation arrest with methods for cell-free N-glycoprotein synthesis. This integration enabled a first-in-kind method for ribosome stalling of target proteins modified efficiently and site-specifically with different N-glycan structures. Moreover, the observation that encoding mRNAs remained stably attached to ribosomes provides evidence of a genotype–glycophenotype link between an arrested glycoprotein and its RNA message. We anticipate that our method will enable selection and evolution of N-glycoproteins with advantageous biological and biophysical properties. |
---|---|
ISSN: | 2161-5063 2161-5063 |
DOI: | 10.1021/acssynbio.2c00311 |