Loading…

Mapping of binding domains of nontypeable Haemophilus influenzae HMW1 and HMW2 adhesins

Nontypeable Haemophilus influenzae is an important cause of localized respiratory tract disease, which begins with colonization of the upper respiratory mucosa. In previous work we reported that the nontypeable H. influenzae HMW1 and HMW2 proteins are high-molecular-weight nonpilus adhesins responsi...

Full description

Saved in:
Bibliographic Details
Published in:Infection and immunity 2001, Vol.69 (1), p.307-314
Main Authors: DAWID, Suzanne, GRASS, Susan, GEME, Joseph W. St. III
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nontypeable Haemophilus influenzae is an important cause of localized respiratory tract disease, which begins with colonization of the upper respiratory mucosa. In previous work we reported that the nontypeable H. influenzae HMW1 and HMW2 proteins are high-molecular-weight nonpilus adhesins responsible for attachment to human epithelial cells, an essential step in the process of colonization. Interestingly, although HMW1 and HMW2 share significant sequence similarity, they display distinct cellular binding specificities. In order to map the HMW1 and HMW2 binding domains, we generated a series of complementary HMW1-HMW2 chimeric proteins and examined the ability of these proteins to promote in vitro adherence by Escherichia coli DH5alpha. Using this approach, we localized the HMW1 and HMW2 binding domains to an approximately 360-amino-acid region near the N terminus of the mature HMW1 and HMW2 proteins. Experiments with maltose-binding protein fusion proteins containing segments of either HMW1 or HMW2 confirmed these results and suggested that the fully functional binding domains may be conformational structures that require relatively long stretches of sequence. Of note, the HMW1 and HMW2 binding domains correspond to areas of maximal sequence dissimilarity, suggesting that selective advantage associated with broader adhesive potential has been a major driving force during H. influenzae evolution. These findings should facilitate efforts to develop a subcomponent vaccine effective against nontypeable H. influenzae disease.
ISSN:0019-9567
1098-5522
DOI:10.1128/IAI.69.1.307-314.2001