Loading…

AgeAnno: a knowledgebase of single-cell annotation of aging in human

Aging is a complex process that accompanied by molecular and cellular alterations. The identification of tissue-/cell type-specific biomarkers of aging and elucidation of the detailed biological mechanisms of aging-related genes at the single-cell level can help to understand the heterogeneous aging...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2023-01, Vol.51 (D1), p.D805-D815
Main Authors: Huang, Kexin, Gong, Hoaran, Guan, Jingjing, Zhang, Lingxiao, Hu, Changbao, Zhao, Weiling, Huang, Liyu, Zhang, Wei, Kim, Pora, Zhou, Xiaobo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c381t-8367a3832ba22ca735b8b31423eb85adbf2d1ae1ab5009e0932ec44d8306bf2a3
cites cdi_FETCH-LOGICAL-c381t-8367a3832ba22ca735b8b31423eb85adbf2d1ae1ab5009e0932ec44d8306bf2a3
container_end_page D815
container_issue D1
container_start_page D805
container_title Nucleic acids research
container_volume 51
creator Huang, Kexin
Gong, Hoaran
Guan, Jingjing
Zhang, Lingxiao
Hu, Changbao
Zhao, Weiling
Huang, Liyu
Zhang, Wei
Kim, Pora
Zhou, Xiaobo
description Aging is a complex process that accompanied by molecular and cellular alterations. The identification of tissue-/cell type-specific biomarkers of aging and elucidation of the detailed biological mechanisms of aging-related genes at the single-cell level can help to understand the heterogeneous aging process and design targeted anti-aging therapeutics. Here, we built AgeAnno (https://relab.xidian.edu.cn/AgeAnno/#/), a knowledgebase of single cell annotation of aging in human, aiming to provide comprehensive characterizations for aging-related genes across diverse tissue-cell types in human by using single-cell RNA and ATAC sequencing data (scRNA and scATAC). The current version of AgeAnno houses 1 678 610 cells from 28 healthy tissue samples with ages ranging from 0 to 110 years. We collected 5580 aging-related genes from previous resources and performed dynamic functional annotations of the cellular context. For the scRNA data, we performed analyses include differential gene expression, gene variation coefficient, cell communication network, transcription factor (TF) regulatory network, and immune cell proportionc. AgeAnno also provides differential chromatin accessibility analysis, motif/TF enrichment and footprint analysis, and co-accessibility peak analysis for scATAC data. AgeAnno will be a unique resource to systematically characterize aging-related genes across diverse tissue-cell types in human, and it could facilitate antiaging and aging-related disease research.
doi_str_mv 10.1093/nar/gkac847
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9825500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2722311528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-8367a3832ba22ca735b8b31423eb85adbf2d1ae1ab5009e0932ec44d8306bf2a3</originalsourceid><addsrcrecordid>eNpVkE1Lw0AQhhdRbK2evEuOgsTuRz42HoRSP6HgRc_LbDJJY5Pdmk0U_71bWoue5vA-PDPzEnLO6DWjmZga6KbVCnIZpQdkzETCwyhL-CEZU0HjkNFIjsiJc--UsojF0TEZeYZSKeSY3M0qnBljbwIIVsZ-NVhUqMFhYMvA1aZqMMyxaQLwUA99bc0mgcpHQW2C5dCCOSVHJTQOz3ZzQt4e7l_nT-Hi5fF5PluEuZCsD6VIUhBScA2c55CKWEstWMQFahlDoUteMEAGOqY0Q_8bxzyKCilo4jMQE3K79a4H3WKRo-k7aNS6q1vovpWFWv1PTL1Ulf1UmeSxd3rB5U7Q2Y8BXa_a2m3eA4N2cIqnnAvGYi49erVF884612G5X8Oo2vSufO9q17unL_5etmd_ixY_CNh__Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722311528</pqid></control><display><type>article</type><title>AgeAnno: a knowledgebase of single-cell annotation of aging in human</title><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Huang, Kexin ; Gong, Hoaran ; Guan, Jingjing ; Zhang, Lingxiao ; Hu, Changbao ; Zhao, Weiling ; Huang, Liyu ; Zhang, Wei ; Kim, Pora ; Zhou, Xiaobo</creator><creatorcontrib>Huang, Kexin ; Gong, Hoaran ; Guan, Jingjing ; Zhang, Lingxiao ; Hu, Changbao ; Zhao, Weiling ; Huang, Liyu ; Zhang, Wei ; Kim, Pora ; Zhou, Xiaobo</creatorcontrib><description>Aging is a complex process that accompanied by molecular and cellular alterations. The identification of tissue-/cell type-specific biomarkers of aging and elucidation of the detailed biological mechanisms of aging-related genes at the single-cell level can help to understand the heterogeneous aging process and design targeted anti-aging therapeutics. Here, we built AgeAnno (https://relab.xidian.edu.cn/AgeAnno/#/), a knowledgebase of single cell annotation of aging in human, aiming to provide comprehensive characterizations for aging-related genes across diverse tissue-cell types in human by using single-cell RNA and ATAC sequencing data (scRNA and scATAC). The current version of AgeAnno houses 1 678 610 cells from 28 healthy tissue samples with ages ranging from 0 to 110 years. We collected 5580 aging-related genes from previous resources and performed dynamic functional annotations of the cellular context. For the scRNA data, we performed analyses include differential gene expression, gene variation coefficient, cell communication network, transcription factor (TF) regulatory network, and immune cell proportionc. AgeAnno also provides differential chromatin accessibility analysis, motif/TF enrichment and footprint analysis, and co-accessibility peak analysis for scATAC data. AgeAnno will be a unique resource to systematically characterize aging-related genes across diverse tissue-cell types in human, and it could facilitate antiaging and aging-related disease research.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkac847</identifier><identifier>PMID: 36200838</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adolescent ; Adult ; Aged ; Aged, 80 and over ; Aging - genetics ; Aging - pathology ; Child ; Child, Preschool ; Chromatin - genetics ; Database Issue ; Humans ; Infant ; Infant, Newborn ; Knowledge Bases ; Middle Aged ; Single-Cell Analysis ; Young Adult</subject><ispartof>Nucleic acids research, 2023-01, Vol.51 (D1), p.D805-D815</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-8367a3832ba22ca735b8b31423eb85adbf2d1ae1ab5009e0932ec44d8306bf2a3</citedby><cites>FETCH-LOGICAL-c381t-8367a3832ba22ca735b8b31423eb85adbf2d1ae1ab5009e0932ec44d8306bf2a3</cites><orcidid>0000-0001-7191-6495 ; 0000-0001-6534-2712 ; 0000-0002-8321-6864 ; 0000-0002-5661-4090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825500/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825500/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36200838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Kexin</creatorcontrib><creatorcontrib>Gong, Hoaran</creatorcontrib><creatorcontrib>Guan, Jingjing</creatorcontrib><creatorcontrib>Zhang, Lingxiao</creatorcontrib><creatorcontrib>Hu, Changbao</creatorcontrib><creatorcontrib>Zhao, Weiling</creatorcontrib><creatorcontrib>Huang, Liyu</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Kim, Pora</creatorcontrib><creatorcontrib>Zhou, Xiaobo</creatorcontrib><title>AgeAnno: a knowledgebase of single-cell annotation of aging in human</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Aging is a complex process that accompanied by molecular and cellular alterations. The identification of tissue-/cell type-specific biomarkers of aging and elucidation of the detailed biological mechanisms of aging-related genes at the single-cell level can help to understand the heterogeneous aging process and design targeted anti-aging therapeutics. Here, we built AgeAnno (https://relab.xidian.edu.cn/AgeAnno/#/), a knowledgebase of single cell annotation of aging in human, aiming to provide comprehensive characterizations for aging-related genes across diverse tissue-cell types in human by using single-cell RNA and ATAC sequencing data (scRNA and scATAC). The current version of AgeAnno houses 1 678 610 cells from 28 healthy tissue samples with ages ranging from 0 to 110 years. We collected 5580 aging-related genes from previous resources and performed dynamic functional annotations of the cellular context. For the scRNA data, we performed analyses include differential gene expression, gene variation coefficient, cell communication network, transcription factor (TF) regulatory network, and immune cell proportionc. AgeAnno also provides differential chromatin accessibility analysis, motif/TF enrichment and footprint analysis, and co-accessibility peak analysis for scATAC data. AgeAnno will be a unique resource to systematically characterize aging-related genes across diverse tissue-cell types in human, and it could facilitate antiaging and aging-related disease research.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Aging - genetics</subject><subject>Aging - pathology</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Chromatin - genetics</subject><subject>Database Issue</subject><subject>Humans</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Knowledge Bases</subject><subject>Middle Aged</subject><subject>Single-Cell Analysis</subject><subject>Young Adult</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVkE1Lw0AQhhdRbK2evEuOgsTuRz42HoRSP6HgRc_LbDJJY5Pdmk0U_71bWoue5vA-PDPzEnLO6DWjmZga6KbVCnIZpQdkzETCwyhL-CEZU0HjkNFIjsiJc--UsojF0TEZeYZSKeSY3M0qnBljbwIIVsZ-NVhUqMFhYMvA1aZqMMyxaQLwUA99bc0mgcpHQW2C5dCCOSVHJTQOz3ZzQt4e7l_nT-Hi5fF5PluEuZCsD6VIUhBScA2c55CKWEstWMQFahlDoUteMEAGOqY0Q_8bxzyKCilo4jMQE3K79a4H3WKRo-k7aNS6q1vovpWFWv1PTL1Ulf1UmeSxd3rB5U7Q2Y8BXa_a2m3eA4N2cIqnnAvGYi49erVF884612G5X8Oo2vSufO9q17unL_5etmd_ixY_CNh__Q</recordid><startdate>20230106</startdate><enddate>20230106</enddate><creator>Huang, Kexin</creator><creator>Gong, Hoaran</creator><creator>Guan, Jingjing</creator><creator>Zhang, Lingxiao</creator><creator>Hu, Changbao</creator><creator>Zhao, Weiling</creator><creator>Huang, Liyu</creator><creator>Zhang, Wei</creator><creator>Kim, Pora</creator><creator>Zhou, Xiaobo</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7191-6495</orcidid><orcidid>https://orcid.org/0000-0001-6534-2712</orcidid><orcidid>https://orcid.org/0000-0002-8321-6864</orcidid><orcidid>https://orcid.org/0000-0002-5661-4090</orcidid></search><sort><creationdate>20230106</creationdate><title>AgeAnno: a knowledgebase of single-cell annotation of aging in human</title><author>Huang, Kexin ; Gong, Hoaran ; Guan, Jingjing ; Zhang, Lingxiao ; Hu, Changbao ; Zhao, Weiling ; Huang, Liyu ; Zhang, Wei ; Kim, Pora ; Zhou, Xiaobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-8367a3832ba22ca735b8b31423eb85adbf2d1ae1ab5009e0932ec44d8306bf2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Aging - genetics</topic><topic>Aging - pathology</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Chromatin - genetics</topic><topic>Database Issue</topic><topic>Humans</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Knowledge Bases</topic><topic>Middle Aged</topic><topic>Single-Cell Analysis</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Kexin</creatorcontrib><creatorcontrib>Gong, Hoaran</creatorcontrib><creatorcontrib>Guan, Jingjing</creatorcontrib><creatorcontrib>Zhang, Lingxiao</creatorcontrib><creatorcontrib>Hu, Changbao</creatorcontrib><creatorcontrib>Zhao, Weiling</creatorcontrib><creatorcontrib>Huang, Liyu</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Kim, Pora</creatorcontrib><creatorcontrib>Zhou, Xiaobo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Kexin</au><au>Gong, Hoaran</au><au>Guan, Jingjing</au><au>Zhang, Lingxiao</au><au>Hu, Changbao</au><au>Zhao, Weiling</au><au>Huang, Liyu</au><au>Zhang, Wei</au><au>Kim, Pora</au><au>Zhou, Xiaobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AgeAnno: a knowledgebase of single-cell annotation of aging in human</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2023-01-06</date><risdate>2023</risdate><volume>51</volume><issue>D1</issue><spage>D805</spage><epage>D815</epage><pages>D805-D815</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><abstract>Aging is a complex process that accompanied by molecular and cellular alterations. The identification of tissue-/cell type-specific biomarkers of aging and elucidation of the detailed biological mechanisms of aging-related genes at the single-cell level can help to understand the heterogeneous aging process and design targeted anti-aging therapeutics. Here, we built AgeAnno (https://relab.xidian.edu.cn/AgeAnno/#/), a knowledgebase of single cell annotation of aging in human, aiming to provide comprehensive characterizations for aging-related genes across diverse tissue-cell types in human by using single-cell RNA and ATAC sequencing data (scRNA and scATAC). The current version of AgeAnno houses 1 678 610 cells from 28 healthy tissue samples with ages ranging from 0 to 110 years. We collected 5580 aging-related genes from previous resources and performed dynamic functional annotations of the cellular context. For the scRNA data, we performed analyses include differential gene expression, gene variation coefficient, cell communication network, transcription factor (TF) regulatory network, and immune cell proportionc. AgeAnno also provides differential chromatin accessibility analysis, motif/TF enrichment and footprint analysis, and co-accessibility peak analysis for scATAC data. AgeAnno will be a unique resource to systematically characterize aging-related genes across diverse tissue-cell types in human, and it could facilitate antiaging and aging-related disease research.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>36200838</pmid><doi>10.1093/nar/gkac847</doi><orcidid>https://orcid.org/0000-0001-7191-6495</orcidid><orcidid>https://orcid.org/0000-0001-6534-2712</orcidid><orcidid>https://orcid.org/0000-0002-8321-6864</orcidid><orcidid>https://orcid.org/0000-0002-5661-4090</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2023-01, Vol.51 (D1), p.D805-D815
issn 0305-1048
1362-4962
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9825500
source Oxford Journals Open Access Collection; PubMed Central
subjects Adolescent
Adult
Aged
Aged, 80 and over
Aging - genetics
Aging - pathology
Child
Child, Preschool
Chromatin - genetics
Database Issue
Humans
Infant
Infant, Newborn
Knowledge Bases
Middle Aged
Single-Cell Analysis
Young Adult
title AgeAnno: a knowledgebase of single-cell annotation of aging in human
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A31%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AgeAnno:%20a%20knowledgebase%20of%20single-cell%20annotation%20of%20aging%20in%20human&rft.jtitle=Nucleic%20acids%20research&rft.au=Huang,%20Kexin&rft.date=2023-01-06&rft.volume=51&rft.issue=D1&rft.spage=D805&rft.epage=D815&rft.pages=D805-D815&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkac847&rft_dat=%3Cproquest_pubme%3E2722311528%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-8367a3832ba22ca735b8b31423eb85adbf2d1ae1ab5009e0932ec44d8306bf2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2722311528&rft_id=info:pmid/36200838&rfr_iscdi=true