Loading…
Oculomotor changes following learned use of an eccentric retinal locus
People with bilateral central vision loss sometimes develop a new point of oculomotor reference called a preferred retinal locus (PRL) that is used for fixating and planning saccadic eye movements. How individuals develop and learn to effectively use a PRL is still debated; in particular, the time c...
Saved in:
Published in: | Vision research (Oxford) 2022-12, Vol.201, p.108126-108126, Article 108126 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | People with bilateral central vision loss sometimes develop a new point of oculomotor reference called a preferred retinal locus (PRL) that is used for fixating and planning saccadic eye movements. How individuals develop and learn to effectively use a PRL is still debated; in particular, the time course of learning to plan saccades using a PRL and learning to stabilize peripheral fixation at the desired location. Here we address knowledge limitations through research describing how eye movements change as a person learns to adopt an eccentric retinal locus. Using a gaze-contingent, eye tracking-guided paradigm to simulate central vision loss, 40 participants developed a PRL by engaging in an oculomotor and visual recognition task. After 12 training sessions, significant improvements were observed in six eye movement metrics addressing different aspects involved in learning to use a PRL: first saccade landing dispersion, saccadic re-referencing, saccadic precision, saccadic latency, percentage of useful trials, and fixation stability. Importantly, our analyses allowed separate examination of the stability of target fixation separately from the dispersion and precision of the landing location of saccades. These measures explained 50% of the across-subject variance in accuracy. Fixation stability and saccadic precision showed a strong, positive correlation. Although there was no statistically significant difference in rate of learning, individuals did tend to learn saccadic precision faster than fixation stability. Saccadic precision was also more associated with accuracy than fixation stability for the behavioral task. This suggests effective intervention strategies in low vision should address both fixation stability and saccadic precision. |
---|---|
ISSN: | 0042-6989 1878-5646 |
DOI: | 10.1016/j.visres.2022.108126 |