Loading…

ecmtool: fast and memory-efficient enumeration of elementary conversion modes

Abstract Motivation Characterizing all steady-state flux distributions in metabolic models remains limited to small models due to the explosion of possibilities. Often it is sufficient to look only at all possible overall conversions a cell can catalyze ignoring the details of intracellular metaboli...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics (Oxford, England) England), 2023-03, Vol.39 (3)
Main Authors: Buchner, Bianca, Clement, Tom J, de Groot, Daan H, Zanghellini, Jürgen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Motivation Characterizing all steady-state flux distributions in metabolic models remains limited to small models due to the explosion of possibilities. Often it is sufficient to look only at all possible overall conversions a cell can catalyze ignoring the details of intracellular metabolism. Such a characterization is achieved by elementary conversion modes (ECMs), which can be conveniently computed with ecmtool. However, currently, ecmtool is memory intensive, and it cannot be aided appreciably by parallelization. Results We integrate mplrs—a scalable parallel vertex enumeration method—into ecmtool. This speeds up computation, drastically reduces memory requirements and enables ecmtool’s use in standard and high-performance computing environments. We show the new capabilities by enumerating all feasible ECMs of the near-complete metabolic model of the minimal cell JCVI-syn3.0. Despite the cell’s minimal character, the model gives rise to 4.2×109 ECMs and still contains several redundant sub-networks. Availability and implementation ecmtool is available at https://github.com/SystemsBioinformatics/ecmtool. Supplementary information Supplementary data are available at Bioinformatics online.
ISSN:1367-4811
1367-4803
1367-4811
DOI:10.1093/bioinformatics/btad095