Loading…
A synergistic Rh(I)/organoboron-catalysed site-selective carbohydrate functionalization that involves multiple stereocontrol
Site-selective functionalization is a core synthetic strategy that has broad implications in organic synthesis. Particularly, exploiting chiral catalysis to control site selectivity in complex carbohydrate functionalizations has emerged as a leading method to unravel unprecedented routes into biolog...
Saved in:
Published in: | Nature chemistry 2023-03, Vol.15 (3), p.424-435 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Site-selective functionalization is a core synthetic strategy that has broad implications in organic synthesis. Particularly, exploiting chiral catalysis to control site selectivity in complex carbohydrate functionalizations has emerged as a leading method to unravel unprecedented routes into biologically relevant glycosides. However, robust catalytic systems available to overcome multiple facets of stereoselectivity challenges to this end still remain scarce. Here we report a synergistic chiral Rh(I)- and organoboron-catalysed protocol, which enables access into synthetically challenging but biologically relevant arylnaphthalene glycosides. Our method depicts the employment of chiral Rh(I) catalysis in site-selective carbohydrate functionalization and showcases the utility of boronic acid as a compatible co-catalyst. Crucial to the success of our method is the judicious choice of a suitable organoboron catalyst. We also determine that exquisite multiple aspects of stereocontrol, including enantio-, diastereo-, regio- and anomeric control and dynamic kinetic resolution, are concomitantly operative.
Asymmetric systems for catalytic carbohydrate functionalization are mostly limited to chiral copper complexes and organocatalysts. Now, a synergistic chiral Rh(I)- and organoboron-catalysed site-selective functionalization of carbohydrate polyols has been developed, giving stereocontrolled access to biologically relevant arylhydronaphthalene glycosides. Enantio-, diastereo-, regio- and anomeric control and dynamic kinetic resolution were found to be concomitantly operative. |
---|---|
ISSN: | 1755-4330 1755-4349 1755-4349 |
DOI: | 10.1038/s41557-022-01110-z |