Loading…
Hyperoxia impairs intraflagellar transport and causes dysregulated metabolism with resultant decreased cilia length
Supplemental oxygen is a lifesaving measure in infants born premature to facilitate oxygenation. Unfortunately, it may lead to alveolar simplification and loss of proximal airway epithelial cilia. Little is known about the mechanism by which hyperoxia causes ciliary dysfunction in the proximal respi...
Saved in:
Published in: | American journal of physiology. Lung cellular and molecular physiology 2023-03, Vol.324 (3), p.L325-L334 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Supplemental oxygen is a lifesaving measure in infants born premature to facilitate oxygenation. Unfortunately, it may lead to alveolar simplification and loss of proximal airway epithelial cilia. Little is known about the mechanism by which hyperoxia causes ciliary dysfunction in the proximal respiratory tract. We hypothesized that hyperoxia causes intraflagellar transport (IFT) dysfunction with resultant decreased cilia length. Differentiated basal human airway epithelial cells (HAEC) were exposed to hyperoxia or air for up to 48 h. Neonatal mice ( |
---|---|
ISSN: | 1040-0605 1522-1504 |
DOI: | 10.1152/ajplung.00522.2021 |