Loading…
Surface theory in discrete projective differential geometry. I. A canonical frame and an integrable discrete Demoulin system
We present the first steps of a procedure which discretizes surface theory in classical projective differential geometry in such a manner that underlying integrable structure is preserved. We propose a canonical frame in terms of which the associated projective Gauss-Weingarten and Gauss-Mainardi-Co...
Saved in:
Published in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2018-06, Vol.474 (2214), p.20170770-20170770 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present the first steps of a procedure which discretizes surface theory in classical projective differential geometry in such a manner that underlying integrable structure is preserved. We propose a canonical frame in terms of which the associated projective Gauss-Weingarten and Gauss-Mainardi-Codazzi equations adopt compact forms. Based on a scaling symmetry which injects a parameter into the linear Gauss-Weingarten equations, we set down an algebraic classification scheme of discrete projective minimal surfaces which turns out to admit a geometric counterpart formulated in terms of discrete notions of Lie quadrics and their envelopes. In the case of discrete Demoulin surfaces, we derive a Bäcklund transformation for the underlying discrete Demoulin system and show how the latter may be formulated as a two-component generalization of the integrable discrete Tzitzéica equation which has originally been derived in a different context. At the geometric level, this connection leads to the retrieval of the standard discretization of affine spheres in affine differential geometry. |
---|---|
ISSN: | 1364-5021 1471-2946 |
DOI: | 10.1098/rspa.2017.0770 |