Loading…
Surface modification of titanium with curcumin: a promising strategy to combat fibrous encapsulationElectronic supplementary information (ESI) available. See DOI: 10.1039/c4tb01616e
Fibrous encapsulation that prevents the direct contact between an implant and the bone can cause implant failure. However, prevention of fibrous encapsulation is difficult because of the lack of effective strategies which can selectively control the growth of fibroblasts and osteoblasts. Because cur...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fibrous encapsulation that prevents the direct contact between an implant and the bone can cause implant failure. However, prevention of fibrous encapsulation is difficult because of the lack of effective strategies which can selectively control the growth of fibroblasts and osteoblasts. Because curcumin, an extract from
Curcuma longa
, was recently found to reduce the formation of fibrous tissue, it is hypothesized that loading curcumin on implant surfaces would be efficacious in inhibiting fibrous encapsulation without adversely affecting the osteoblast functions. To prove this hypothesis, curcumin was loaded on to a titanium surface using poly(dopamine) as an anchor, and the behaviors of fibroblasts and osteoblasts on these curcumin-modified surfaces were investigated. Curcumin was successfully loaded on to titanium and showed a low release after incubation in phosphate-buffered saline for seven days. On the curcumin-modified surfaces, fibroblast proliferation was suppressed, and fibrous marker expressions as well as collagen synthesis were significantly reduced. These reductions were possibly because of the enhancement of fibroblast apoptosis induced by the surface curcumin. In contrast, no significant reduction in osteoblast functions was observed on the curcumin-modified substrates. These findings may provide a promising solution to reduce fibrous encapsulation, and thus may be highly beneficial for orthopaedic applications.
Fibrous encapsulation that prevents the direct contact between an implant and the bone can cause implant failure. |
---|---|
ISSN: | 2050-750X 2050-7518 |
DOI: | 10.1039/c4tb01616e |