Loading…
drug release behavior and osseointegration of a doxorubicin-loaded tissue-engineered scaffold
Bone tissue-engineered scaffolds with therapeutic effects must meet the basic requirements as to support bone healing at the defect side and to release an effect drug within the therapeutic window. Here, a rapid prototyped PCL scaffold embedded with a chitosan/nanoclay/β-tricalcium phosphate composi...
Saved in:
Published in: | RSC advances 2016-08, Vol.6 (8), p.76237-76245 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bone tissue-engineered scaffolds with therapeutic effects must meet the basic requirements as to support bone healing at the defect side and to release an effect drug within the therapeutic window. Here, a rapid prototyped PCL scaffold embedded with a chitosan/nanoclay/β-tricalcium phosphate composite (DESCLAYMR) loaded with the chemotherapeutic drug doxorubicin (DESCLAYMR_DOX) is proposed as a potential multifunctional medical application for patients who undergo bone tumor resection. We showed the DESCLAYMR_DOX scaffold released DOX locally in a sustained manner in mice without significantly increasing the plasma DOX concentrations. The evaluation of osseointegration in a porcine study showed increased mineralized bone formation, unmineralized collagen fibers and significantly higher alpha Smooth Muscle Actin (α-SMA) positive areas relative to the total investigated area (TA) in defects treated solely with the DESCLAYMR scaffold than in the DESCLAYMR_DOX; and alkaline phosphatase activity, α-SMA/TA and bone formation were higher in the DESCLAYMR loaded with 100 μg per scaffold DOX (DOX_low) than with 400 μg per scaffold DOX (DOX_high). Our results suggest that the DESCLAYMR_DOX can be a viable candidate as a multifunctional medical application by delivering the chemotherapeutic agent to target remaining tumor cells and facilitate bone formation.
This pre-clinical study presented a dual function of a doxorubicin-loaded scaffold for both chemotherapeutic agent delivery and bone formation. |
---|---|
ISSN: | 2046-2069 |
DOI: | 10.1039/c6ra05351c |