Loading…

A 2,2′-bipyridine-containing covalent organic framework bearing rhenium() tricarbonyl moieties for CO reduction

The reduction of CO 2 into higher energy products such as carbon-based fuels and feedstocks is an attractive strategy for mitigating the continuous rise in CO 2 emissions associated with the growing global energy demand. Rhenium tricarbonyl complexes bearing 2,2′-bipyridine (2,2′-bpy) ligands are we...

Full description

Saved in:
Bibliographic Details
Published in:Dalton transactions : an international journal of inorganic chemistry 2018-12, Vol.47 (48), p.1745-1746
Main Authors: Popov, Damir A, Luna, John M, Orchanian, Nicholas M, Haiges, Ralf, Downes, Courtney A, Marinescu, Smaranda C
Format: Article
Language:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The reduction of CO 2 into higher energy products such as carbon-based fuels and feedstocks is an attractive strategy for mitigating the continuous rise in CO 2 emissions associated with the growing global energy demand. Rhenium tricarbonyl complexes bearing 2,2′-bipyridine (2,2′-bpy) ligands are well-established molecular electrocatalysts for the selective reduction of CO 2 to CO. Construction of efficient devices for this electrochemical process requires the immobilization of electrocatalysts to electrode surfaces. To integrate Re(2,2′-bpy)(CO) 3 fragments into a covalent organic framework (COF), Re(5,5′-diamine-2,2′-bpy)(CO) 3 Cl ( 1 ) was synthesized and electrochemically investigated. Complex 1 is an active and selective electrocatalyst for the reduction of CO 2 to CO with excellent faradaic efficiency (99%). The presence of the amine substituents leads to a destabilization of the π* orbital of the 5,5′-diamine-2,2′-bpy ligand with respect to the metal center. Therefore, 1 requires more negative potentials (−2.47 V vs. Fc +/0 ) to reach the doubly reduced catalytically active species. DFT studies were conducted to understand the electronic structure of 1 , and support the destabilizing effect of the amine substituents. The Re-2,2′-bpy fragments were successfully integrated into a COF containing 2,2′-bpy moieties (COF-2,2′-bpy) via a post-metallation synthetic route to generate COF-2,2′-bpy-Re. A composite of COF-2,2′-bpy-Re, carbon black, and polyvinylidene fluoride (PVDF) was readily immobilized onto glassy carbon electrodes and electrocatalytic CO 2 reduction to CO was observed at −2.8 V vs. Fc 0/+ , with a faradaic efficiency of 81% for CO production. The reduction of CO 2 into higher energy products such as carbon-based fuels and feedstocks is an attractive strategy for mitigating the continuous rise in CO 2 emissions associated with the growing global energy demand.
ISSN:1477-9226
1477-9234
DOI:10.1039/c8dt00125a