Loading…
A selective sensing platform for the simultaneous detection of ascorbic acid, dopamine, and uric acid based on AuNPs/carboxylated COFs/Poly(fuchsin basic) film
In this study, an electrochemical sensing strategy was developed based on the synergies of gold nanoparticles (AuNPs) doped carboxylated covalent organic frameworks (ACOFs) and poly(fuchsin basic) film for the simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). This stra...
Saved in:
Published in: | Analytical methods 2021-10, Vol.13 (38), p.453-4514 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, an electrochemical sensing strategy was developed based on the synergies of gold nanoparticles (AuNPs) doped carboxylated covalent organic frameworks (ACOFs) and poly(fuchsin basic) film for the simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). This strategy not only took advantage of the adopted materials but also made use of the H-bonding and electrostatic interaction between the three compounds and materials. For this sensing, a poly-BFu film was formed on the surface of bare glass carbon electrode (GCE) under a constant potential. AuNPs was highly dispersed and immobilized on the constructed ACOF-TaTp to obtain AuNPs@ACOF. The constructed sensor AuNPs@ACOF/p-BFu/GCE combined the merits of high surface area, hydrophilicity, conductivity, and selective affinity, consequently exhibiting high sensitivity and selectivity toward the simultaneous detection of AA, DA, and UA with wide linear response ranges of 25-1500 μM, 0.75-40 μM, and 1-200 μM, respectively. The corresponding detection limits were 12.0 μM, 0.15 μM, and 0.22 μM. The simultaneous determination of UA in real human urine sample further confirmed the practicability of the designed electrode.
Selective electrochemical sensing
via
H-bonding and electrostatic interactions. |
---|---|
ISSN: | 1759-9660 1759-9679 |
DOI: | 10.1039/d1ay00849h |