Loading…

A selective sensing platform for the simultaneous detection of ascorbic acid, dopamine, and uric acid based on AuNPs/carboxylated COFs/Poly(fuchsin basic) film

In this study, an electrochemical sensing strategy was developed based on the synergies of gold nanoparticles (AuNPs) doped carboxylated covalent organic frameworks (ACOFs) and poly(fuchsin basic) film for the simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). This stra...

Full description

Saved in:
Bibliographic Details
Published in:Analytical methods 2021-10, Vol.13 (38), p.453-4514
Main Authors: He, Yasan, Lin, Xiaogeng, Tang, Yuan, Ye, Ling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, an electrochemical sensing strategy was developed based on the synergies of gold nanoparticles (AuNPs) doped carboxylated covalent organic frameworks (ACOFs) and poly(fuchsin basic) film for the simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). This strategy not only took advantage of the adopted materials but also made use of the H-bonding and electrostatic interaction between the three compounds and materials. For this sensing, a poly-BFu film was formed on the surface of bare glass carbon electrode (GCE) under a constant potential. AuNPs was highly dispersed and immobilized on the constructed ACOF-TaTp to obtain AuNPs@ACOF. The constructed sensor AuNPs@ACOF/p-BFu/GCE combined the merits of high surface area, hydrophilicity, conductivity, and selective affinity, consequently exhibiting high sensitivity and selectivity toward the simultaneous detection of AA, DA, and UA with wide linear response ranges of 25-1500 μM, 0.75-40 μM, and 1-200 μM, respectively. The corresponding detection limits were 12.0 μM, 0.15 μM, and 0.22 μM. The simultaneous determination of UA in real human urine sample further confirmed the practicability of the designed electrode. Selective electrochemical sensing via H-bonding and electrostatic interactions.
ISSN:1759-9660
1759-9679
DOI:10.1039/d1ay00849h