Loading…
Potassium-modulated physiological performance of mango plants infected by Ceratocystis fimbriata
ABSTRACT Mango wilt, caused by the fungus Ceratocystis fimbriata, is an important disease affecting mango production. In view of the beneficial effects of potassium (K) in other profitable crops and the lack of information about the effect of macronutrients on mango wilt development, the present stu...
Saved in:
Published in: | Bragantia 2017-10, Vol.76 (4), p.521-535 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT Mango wilt, caused by the fungus Ceratocystis fimbriata, is an important disease affecting mango production. In view of the beneficial effects of potassium (K) in other profitable crops and the lack of information about the effect of macronutrients on mango wilt development, the present study aimed to evaluate how mango plants supplied with K respond physiologically when infected by C. fimbriata. Mango plants (» 3 years old) from cultivar Ubá were grown in plastic pots containing 58 mg of K·dm−3 (original K level based on the chemical analysis of the substrate) or in plastic pots with substrate amended with a solution of 0.5 M potassium chloride (KCl) to achieve the rate of 240 mg K·dm−3. Disease symptoms were more pronounced in inoculated plants grown at the lower K level. Substantial declines in stomatal conductance, in line with decreases in the internal-to-ambient CO2 concentration ratio and the absence of detectable changes in the chlorophyll a fluorescence parameters, suggest that the decrease in the net carbon assimilation rate is due, at least initially, to stomatal limitations. High concentrations of K and manganese were found in the stem tissues of inoculated plants and supplied with the highest K rate, most likely due to the involvement of these tissues in the local development of defense mechanisms. The results of this study suggest that the supply of K favored the physiological performance of mango plants and their resistance against C. fimbriata infection. |
---|---|
ISSN: | 0006-8705 1678-4499 1678-4499 |
DOI: | 10.1590/1678-4499.2016.264 |