Loading…

Ajuste do modelo de Schumacher e Hall e aplicação de redes neurais artificiais para estimar volume de árvores de eucalipto

Objetivou-se, neste trabalho, avaliar o ajuste do modelo volumétrico de Schumacher e Hall por diferentes algoritmos, bem como a aplicação de redes neurais artificiais para estimação do volume de madeira de eucalipto em função do diâmetro a 1,30 m do solo (DAP), da altura total (Ht) e do clone. Foram...

Full description

Saved in:
Bibliographic Details
Published in:Revista árvore 2009, Vol.33 (6), p.1133-1139
Main Authors: Silva, Mayra Luiza Marques da(UFV Programa de Pós-Graduação em Ciência Florestal), Binoti, Daniel Henrique Breda(UFV Programa de Pós-Graduação em Ciência Florestal), Gleriani, José Marinaldo(Universidade Federal de Viçosa Departamento de Emgenharia Florestal), Leite, Helio Garcia(Universidade Federal de Viçosa Departamento de Emgenharia Florestal)
Format: Article
Language:Portuguese
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objetivou-se, neste trabalho, avaliar o ajuste do modelo volumétrico de Schumacher e Hall por diferentes algoritmos, bem como a aplicação de redes neurais artificiais para estimação do volume de madeira de eucalipto em função do diâmetro a 1,30 m do solo (DAP), da altura total (Ht) e do clone. Foram utilizadas 21 cubagens de povoamentos de clones de eucalipto com DAP variando de 4,5 a 28,3 cm e altura total de 6,6 a 33,8 m, num total de 862 árvores. O modelo volumétrico de Schumacher e Hall foi ajustado nas formas linear e não linear, com os seguintes algoritmos: Gauss-Newton, Quasi-Newton, Levenberg-Marquardt, Simplex, Hooke-Jeeves Pattern, Rosenbrock Pattern, Simplex, Hooke-Jeeves e Rosenbrock, utilizado simultaneamente com o método Quasi-Newton e com o princípio da Máxima Verossimilhança. Diferentes arquiteturas e modelos (Multilayer Perceptron MLP e Radial Basis Function RBF) de redes neurais artificiais foram testados, sendo selecionadas as redes que melhor representaram os dados. As estimativas dos volumes foram avaliadas por gráficos de volume estimado em função do volume observado e pelo teste estatístico L and O Assim, conclui-se que o ajuste do modelo de Schumacher e Hall pode ser usado na sua forma linear, com boa representatividade e sem apresentar tendenciosidade; os algoritmos Gauss-Newton, Quasi-Newton e Levenberg-Marquardt mostraram-se eficientes para o ajuste do modelo volumétrico de Schumacher e Hall, e as redes neurais artificiais apresentaram boa adequação ao problema, sendo elas altamente recomendadas para realizar prognose da produção de florestas plantadas. This research aimed at evaluating the adjustment of Schumacher and Hall volumetric model by different algorithms and the application of artificial neural networks to estimate the volume of wood of eucalyptus according to the diameter at breast height (DBH), total height (Ht) of the clone. For such, 21 scalings of stands of eucalyptus clones were used with DBH ranging from 4,5 to 28,3 cm and total height ranging from 6,6 to 33,8 m. The Schumacher and Hall volumetric model was adjusted linearly and nonlinearly with the following algorithms: Gauss-Newton, Quasi-Newton, Levenberg-Marquardt, Simplex, Hooke-Jeeves Pattern, Rosenbrock Pattern; Simplex, Hooke-Jeeves, and Rosenbrock, used simultaneously with the Quasi-Newton method and the principle of Maximum Likelihood. Different architectures and models (Multilayer Perceptron - MLP and Radial Basis Function - RBF) of artificial neural n
ISSN:0100-6762
1806-9088
1806-9088
DOI:10.1590/s0100-67622009000600015