Loading…
A heuristic for the minimization of open stacks problem
It is suggested here a fast and easy to implement heuristic for the minimization of open stacks problem (MOSP). The problem is modeled as a traversing problem in a graph (Gmosp) with a special structure (Yanasse, 1997b). It was observed in Ashikaga (2001) that, in the mean experimental case, Gmosp h...
Saved in:
Published in: | Pesquisa Operacional 2009-08, Vol.29 (2), p.439-450 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is suggested here a fast and easy to implement heuristic for the minimization of open stacks problem (MOSP). The problem is modeled as a traversing problem in a graph (Gmosp) with a special structure (Yanasse, 1997b). It was observed in Ashikaga (2001) that, in the mean experimental case, Gmosp has large cliques and high edge density. This information was used to implement a heuristic based on the extension-rotation algorithm of Pósa (1976) for approximation of Hamiltonian Circuits. Additionally, an initial path for Pósa's algorithm is derived from the vertices of an ideally maximum clique in order to accelerate the process. Extensive computational tests show that the resulting simple approach dominates in time and mean error the fast actually know Yuen (1991 and 1995) heuristic to the problem.
Sugerimos uma heurística rápida e de implementação simples para o problema de minimização de pilhas abertas (MOSP). O problema é modelado como um problema de percorrimento de arcos no grafo (Gmosp) associado (Yanasse, 1997b). Foi observado em Ashikaga (2001) que o grafo Gmosp possui grandes cliques e uma alta densidade de arestas. Esta informação foi utilizada para implementar uma heurística baseada no algoritmo Extensão-Rotação de Pósa (1976) para aproximação de Circuitos Hamiltonianos. O caminho inicial para o algoritmo de Pósa é obtido a partir dos vértices de uma aproximação do maior clique do grafo para acelerar o processo. Testes computacionais extensivos mostram que a abordagem domina tanto em tempo quanto em erro médio a mais rápida heurística conhecida de Yuen (1991 e 1995). |
---|---|
ISSN: | 0101-7438 1678-5142 0101-7438 |
DOI: | 10.1590/S0101-74382009000200010 |