Loading…

Liquid-liquid extraction equilibrium for pyruvic acid recovery: experimental data and modeling

ABSTRACT Physical extraction studies of pyruvic acid from dilute aqueous solutions (0.025 kmol·m-3 to 0.200 kmol·m-3) using several pure solvents (tri-n-butylphosphate (TBP), 1-decanol, 1-octanol, toluene, Methyl-isobutylketone (MIBK), and n-heptane) and their binary mixtures are reported in this wo...

Full description

Saved in:
Bibliographic Details
Published in:Brazilian journal of chemical engineering 2017-07, Vol.34 (3), p.919-925
Main Authors: Pal, Dharm, Thakre, Niraj, Keshav, Amit, Kumar, Awanish, Singh, Dhananjay, Kumari, Neetu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Physical extraction studies of pyruvic acid from dilute aqueous solutions (0.025 kmol·m-3 to 0.200 kmol·m-3) using several pure solvents (tri-n-butylphosphate (TBP), 1-decanol, 1-octanol, toluene, Methyl-isobutylketone (MIBK), and n-heptane) and their binary mixtures are reported in this work. All the batch extraction experiments were carried out at isothermal conditions (T=303±1K) and the results are reported in terms of distribution coefficient (K D). The results obtained by the equilibrium studies of the different extraction system were correlated with solvatochromic parameters of the solvents. A linear solvation energy relationship (LSER) model was applied to interpret the extraction equilibrium which specifically considers physical interactions. The values of the LSER model parameters for the extraction system were optimized by regression technique and the model equations have been proposed. Experimental and model values were in good agreement (RMSD < 0.1).Reported outcomes are useful in the selection of a suitable extraction system and understanding the extraction mechanism for the separation of pyruvic acid from dilute aqueous solutions.
ISSN:0104-6632
1678-4383
1678-4383
DOI:10.1590/0104-6632.20170343s20150276