Loading…

Acute tryptophan administration impairs cortical spreading depression propagation in REM sleep deprived and non-deprived adult rats

The enhanced availability of tryptophan in the brain, as a consequence of exogenous tryptophan administration, can increase neuronal serotonin synthesis and this can interfere with brain function. REM sleep deprivation (D) constitutes another external factor that can change brain excitability, facil...

Full description

Saved in:
Bibliographic Details
Published in:Psychology & Neuroscience 2009-07, Vol.2 (2), p.235-241
Main Authors: Trindade-Filho, Euclides Mauricio, Vasconcelos, Carlos Augusto Carvalho de, Guedes, Rubem Carlos Araújo
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The enhanced availability of tryptophan in the brain, as a consequence of exogenous tryptophan administration, can increase neuronal serotonin synthesis and this can interfere with brain function. REM sleep deprivation (D) constitutes another external factor that can change brain excitability, facilitating, in some cases, the manifestation of neurological diseases like epilepsy. Here we used cortical spreading depression (CSD) as a neurophysiological parameter to investigate the effects of a single L-tryptophan intraperitoneal injection combined or not with 72h D-condition (water-tank technique) in rats. A 1h baseline CSD-recording was performed under urethane+chloralose (1g/kg + 40mg/kg) anesthesia and revealed increased CSD propagation velocities in D rats, as compared with non-deprived (ND), or pseudo-deprived (Pseudo) controls. After the baseline CSD recording, L-tryptophan was immediately injected (125 mg/kg ip, dissolved in water at pH about 3) and this was followed by a significant decrease of CSD propagation velocities, as compared to the baseline values in the same animals of the Pseudo, ND and D condition. In an additional control group (ND rats injected with the vehicle), no CSD propagation change was seen. Our findings indicate an important acute antagonistic influence of tryptophan on CSD propagation, which is not affected by REM sleep deprivation. We suggest that this tryptophan effect may be due to a serotonin-mediated action, probably caused by increased serotonin synthesis as a consequence of enhanced tryptophan availability in the brain.
ISSN:1984-3054
1983-3288
1983-3288
DOI:10.3922/j.psns.2009.2.017