Loading…

The short pulse hierarchy

We study a new hierarchy of equations containing the short pulse equation, which describes the evolution of very short pulses in nonlinear media, and the elastic beam equation, which describes nonlinear transverse oscillations of elastic beams under tension. We show that the hierarchy of equations i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2005-12, Vol.46 (12), p.123507-123507-9
Main Author: Brunelli, J. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study a new hierarchy of equations containing the short pulse equation, which describes the evolution of very short pulses in nonlinear media, and the elastic beam equation, which describes nonlinear transverse oscillations of elastic beams under tension. We show that the hierarchy of equations is integrable. We obtain the two compatible Hamiltonian structures. We construct an infinite series of both local and nonlocal conserved charges. A Lax description is presented for both systems. For the elastic beam equations we also obtain a nonstandard Lax representation.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.2146189