Loading…
The short pulse hierarchy
We study a new hierarchy of equations containing the short pulse equation, which describes the evolution of very short pulses in nonlinear media, and the elastic beam equation, which describes nonlinear transverse oscillations of elastic beams under tension. We show that the hierarchy of equations i...
Saved in:
Published in: | Journal of mathematical physics 2005-12, Vol.46 (12), p.123507-123507-9 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c478t-9b9bf1b7d99bd167bb3d579bb50cb056a203ad82446f9b8c950f43dbe5c4b5a83 |
---|---|
cites | cdi_FETCH-LOGICAL-c478t-9b9bf1b7d99bd167bb3d579bb50cb056a203ad82446f9b8c950f43dbe5c4b5a83 |
container_end_page | 123507-9 |
container_issue | 12 |
container_start_page | 123507 |
container_title | Journal of mathematical physics |
container_volume | 46 |
creator | Brunelli, J. C. |
description | We study a new hierarchy of equations containing the short pulse equation, which describes the evolution of very short pulses in nonlinear media, and the elastic beam equation, which describes nonlinear transverse oscillations of elastic beams under tension. We show that the hierarchy of equations is integrable. We obtain the two compatible Hamiltonian structures. We construct an infinite series of both local and nonlocal conserved charges. A Lax description is presented for both systems. For the elastic beam equations we also obtain a nonstandard Lax representation. |
doi_str_mv | 10.1063/1.2146189 |
format | article |
fullrecord | <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_2146189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-9b9bf1b7d99bd167bb3d579bb50cb056a203ad82446f9b8c950f43dbe5c4b5a83</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRsFYPHr0VxINC6uxmPy9CKX5BwUs9L7ubXRKpSdiNQv-9SVPoSfE0MDzzDu-D0CWGOQae3-M5wZRjqY7QBINUmeBMHqMJACEZoVKeorOUPgAwlpRO0NW69LNUNrGbtV-b5Gdl5aOJrtyeo5Ng-s3Ffk7R-9PjevmSrd6eX5eLVeaokF2mrLIBW1EoZQvMhbV5wYSyloGzwLghkJtCEkp5UFY6xSDQvLCeOWqZkfkUXY-5TeoqnVzVeVe6pq696zQBwSVXqqduR8rFJqXog25j9WniVmPQQ3ON9b55z96MbGuSM5sQTe2qdDgQlAIw3HMPIzc8NV3V1L-H9pr0TpPeadKDpj7g7t8Bf8HfTTyAui1C_gM8Voe1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The short pulse hierarchy</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Brunelli, J. C.</creator><creatorcontrib>Brunelli, J. C.</creatorcontrib><description>We study a new hierarchy of equations containing the short pulse equation, which describes the evolution of very short pulses in nonlinear media, and the elastic beam equation, which describes nonlinear transverse oscillations of elastic beams under tension. We show that the hierarchy of equations is integrable. We obtain the two compatible Hamiltonian structures. We construct an infinite series of both local and nonlocal conserved charges. A Lax description is presented for both systems. For the elastic beam equations we also obtain a nonstandard Lax representation.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.2146189</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; EVOLUTION ; Exact sciences and technology ; HAMILTONIANS ; INTEGRAL CALCULUS ; LAX THEOREM ; Mathematical methods in physics ; Mathematics ; NONLINEAR PROBLEMS ; OSCILLATIONS ; Physics ; PULSES ; SCHROEDINGER EQUATION ; Sciences and techniques of general use</subject><ispartof>Journal of mathematical physics, 2005-12, Vol.46 (12), p.123507-123507-9</ispartof><rights>American Institute of Physics</rights><rights>2005 American Institute of Physics</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-9b9bf1b7d99bd167bb3d579bb50cb056a203ad82446f9b8c950f43dbe5c4b5a83</citedby><cites>FETCH-LOGICAL-c478t-9b9bf1b7d99bd167bb3d579bb50cb056a203ad82446f9b8c950f43dbe5c4b5a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.2146189$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,778,780,791,881,27901,27902,76126</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17440051$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20768699$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Brunelli, J. C.</creatorcontrib><title>The short pulse hierarchy</title><title>Journal of mathematical physics</title><description>We study a new hierarchy of equations containing the short pulse equation, which describes the evolution of very short pulses in nonlinear media, and the elastic beam equation, which describes nonlinear transverse oscillations of elastic beams under tension. We show that the hierarchy of equations is integrable. We obtain the two compatible Hamiltonian structures. We construct an infinite series of both local and nonlocal conserved charges. A Lax description is presented for both systems. For the elastic beam equations we also obtain a nonstandard Lax representation.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>EVOLUTION</subject><subject>Exact sciences and technology</subject><subject>HAMILTONIANS</subject><subject>INTEGRAL CALCULUS</subject><subject>LAX THEOREM</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>NONLINEAR PROBLEMS</subject><subject>OSCILLATIONS</subject><subject>Physics</subject><subject>PULSES</subject><subject>SCHROEDINGER EQUATION</subject><subject>Sciences and techniques of general use</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkE1Lw0AQhhdRsFYPHr0VxINC6uxmPy9CKX5BwUs9L7ubXRKpSdiNQv-9SVPoSfE0MDzzDu-D0CWGOQae3-M5wZRjqY7QBINUmeBMHqMJACEZoVKeorOUPgAwlpRO0NW69LNUNrGbtV-b5Gdl5aOJrtyeo5Ng-s3Ffk7R-9PjevmSrd6eX5eLVeaokF2mrLIBW1EoZQvMhbV5wYSyloGzwLghkJtCEkp5UFY6xSDQvLCeOWqZkfkUXY-5TeoqnVzVeVe6pq696zQBwSVXqqduR8rFJqXog25j9WniVmPQQ3ON9b55z96MbGuSM5sQTe2qdDgQlAIw3HMPIzc8NV3V1L-H9pr0TpPeadKDpj7g7t8Bf8HfTTyAui1C_gM8Voe1</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Brunelli, J. C.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20051201</creationdate><title>The short pulse hierarchy</title><author>Brunelli, J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-9b9bf1b7d99bd167bb3d579bb50cb056a203ad82446f9b8c950f43dbe5c4b5a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>EVOLUTION</topic><topic>Exact sciences and technology</topic><topic>HAMILTONIANS</topic><topic>INTEGRAL CALCULUS</topic><topic>LAX THEOREM</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>NONLINEAR PROBLEMS</topic><topic>OSCILLATIONS</topic><topic>Physics</topic><topic>PULSES</topic><topic>SCHROEDINGER EQUATION</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brunelli, J. C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brunelli, J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The short pulse hierarchy</atitle><jtitle>Journal of mathematical physics</jtitle><date>2005-12-01</date><risdate>2005</risdate><volume>46</volume><issue>12</issue><spage>123507</spage><epage>123507-9</epage><pages>123507-123507-9</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We study a new hierarchy of equations containing the short pulse equation, which describes the evolution of very short pulses in nonlinear media, and the elastic beam equation, which describes nonlinear transverse oscillations of elastic beams under tension. We show that the hierarchy of equations is integrable. We obtain the two compatible Hamiltonian structures. We construct an infinite series of both local and nonlocal conserved charges. A Lax description is presented for both systems. For the elastic beam equations we also obtain a nonstandard Lax representation.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2146189</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2005-12, Vol.46 (12), p.123507-123507-9 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_2146189 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS EVOLUTION Exact sciences and technology HAMILTONIANS INTEGRAL CALCULUS LAX THEOREM Mathematical methods in physics Mathematics NONLINEAR PROBLEMS OSCILLATIONS Physics PULSES SCHROEDINGER EQUATION Sciences and techniques of general use |
title | The short pulse hierarchy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20short%20pulse%20hierarchy&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Brunelli,%20J.%20C.&rft.date=2005-12-01&rft.volume=46&rft.issue=12&rft.spage=123507&rft.epage=123507-9&rft.pages=123507-123507-9&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.2146189&rft_dat=%3Cscitation_osti_%3Ejmp%3C/scitation_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-9b9bf1b7d99bd167bb3d579bb50cb056a203ad82446f9b8c950f43dbe5c4b5a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |