Loading…

The short pulse hierarchy

We study a new hierarchy of equations containing the short pulse equation, which describes the evolution of very short pulses in nonlinear media, and the elastic beam equation, which describes nonlinear transverse oscillations of elastic beams under tension. We show that the hierarchy of equations i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2005-12, Vol.46 (12), p.123507-123507-9
Main Author: Brunelli, J. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c478t-9b9bf1b7d99bd167bb3d579bb50cb056a203ad82446f9b8c950f43dbe5c4b5a83
cites cdi_FETCH-LOGICAL-c478t-9b9bf1b7d99bd167bb3d579bb50cb056a203ad82446f9b8c950f43dbe5c4b5a83
container_end_page 123507-9
container_issue 12
container_start_page 123507
container_title Journal of mathematical physics
container_volume 46
creator Brunelli, J. C.
description We study a new hierarchy of equations containing the short pulse equation, which describes the evolution of very short pulses in nonlinear media, and the elastic beam equation, which describes nonlinear transverse oscillations of elastic beams under tension. We show that the hierarchy of equations is integrable. We obtain the two compatible Hamiltonian structures. We construct an infinite series of both local and nonlocal conserved charges. A Lax description is presented for both systems. For the elastic beam equations we also obtain a nonstandard Lax representation.
doi_str_mv 10.1063/1.2146189
format article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_2146189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-9b9bf1b7d99bd167bb3d579bb50cb056a203ad82446f9b8c950f43dbe5c4b5a83</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRsFYPHr0VxINC6uxmPy9CKX5BwUs9L7ubXRKpSdiNQv-9SVPoSfE0MDzzDu-D0CWGOQae3-M5wZRjqY7QBINUmeBMHqMJACEZoVKeorOUPgAwlpRO0NW69LNUNrGbtV-b5Gdl5aOJrtyeo5Ng-s3Ffk7R-9PjevmSrd6eX5eLVeaokF2mrLIBW1EoZQvMhbV5wYSyloGzwLghkJtCEkp5UFY6xSDQvLCeOWqZkfkUXY-5TeoqnVzVeVe6pq696zQBwSVXqqduR8rFJqXog25j9WniVmPQQ3ON9b55z96MbGuSM5sQTe2qdDgQlAIw3HMPIzc8NV3V1L-H9pr0TpPeadKDpj7g7t8Bf8HfTTyAui1C_gM8Voe1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The short pulse hierarchy</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Brunelli, J. C.</creator><creatorcontrib>Brunelli, J. C.</creatorcontrib><description>We study a new hierarchy of equations containing the short pulse equation, which describes the evolution of very short pulses in nonlinear media, and the elastic beam equation, which describes nonlinear transverse oscillations of elastic beams under tension. We show that the hierarchy of equations is integrable. We obtain the two compatible Hamiltonian structures. We construct an infinite series of both local and nonlocal conserved charges. A Lax description is presented for both systems. For the elastic beam equations we also obtain a nonstandard Lax representation.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.2146189</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; EVOLUTION ; Exact sciences and technology ; HAMILTONIANS ; INTEGRAL CALCULUS ; LAX THEOREM ; Mathematical methods in physics ; Mathematics ; NONLINEAR PROBLEMS ; OSCILLATIONS ; Physics ; PULSES ; SCHROEDINGER EQUATION ; Sciences and techniques of general use</subject><ispartof>Journal of mathematical physics, 2005-12, Vol.46 (12), p.123507-123507-9</ispartof><rights>American Institute of Physics</rights><rights>2005 American Institute of Physics</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-9b9bf1b7d99bd167bb3d579bb50cb056a203ad82446f9b8c950f43dbe5c4b5a83</citedby><cites>FETCH-LOGICAL-c478t-9b9bf1b7d99bd167bb3d579bb50cb056a203ad82446f9b8c950f43dbe5c4b5a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.2146189$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,778,780,791,881,27901,27902,76126</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17440051$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20768699$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Brunelli, J. C.</creatorcontrib><title>The short pulse hierarchy</title><title>Journal of mathematical physics</title><description>We study a new hierarchy of equations containing the short pulse equation, which describes the evolution of very short pulses in nonlinear media, and the elastic beam equation, which describes nonlinear transverse oscillations of elastic beams under tension. We show that the hierarchy of equations is integrable. We obtain the two compatible Hamiltonian structures. We construct an infinite series of both local and nonlocal conserved charges. A Lax description is presented for both systems. For the elastic beam equations we also obtain a nonstandard Lax representation.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>EVOLUTION</subject><subject>Exact sciences and technology</subject><subject>HAMILTONIANS</subject><subject>INTEGRAL CALCULUS</subject><subject>LAX THEOREM</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>NONLINEAR PROBLEMS</subject><subject>OSCILLATIONS</subject><subject>Physics</subject><subject>PULSES</subject><subject>SCHROEDINGER EQUATION</subject><subject>Sciences and techniques of general use</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkE1Lw0AQhhdRsFYPHr0VxINC6uxmPy9CKX5BwUs9L7ubXRKpSdiNQv-9SVPoSfE0MDzzDu-D0CWGOQae3-M5wZRjqY7QBINUmeBMHqMJACEZoVKeorOUPgAwlpRO0NW69LNUNrGbtV-b5Gdl5aOJrtyeo5Ng-s3Ffk7R-9PjevmSrd6eX5eLVeaokF2mrLIBW1EoZQvMhbV5wYSyloGzwLghkJtCEkp5UFY6xSDQvLCeOWqZkfkUXY-5TeoqnVzVeVe6pq696zQBwSVXqqduR8rFJqXog25j9WniVmPQQ3ON9b55z96MbGuSM5sQTe2qdDgQlAIw3HMPIzc8NV3V1L-H9pr0TpPeadKDpj7g7t8Bf8HfTTyAui1C_gM8Voe1</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Brunelli, J. C.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20051201</creationdate><title>The short pulse hierarchy</title><author>Brunelli, J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-9b9bf1b7d99bd167bb3d579bb50cb056a203ad82446f9b8c950f43dbe5c4b5a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>EVOLUTION</topic><topic>Exact sciences and technology</topic><topic>HAMILTONIANS</topic><topic>INTEGRAL CALCULUS</topic><topic>LAX THEOREM</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>NONLINEAR PROBLEMS</topic><topic>OSCILLATIONS</topic><topic>Physics</topic><topic>PULSES</topic><topic>SCHROEDINGER EQUATION</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brunelli, J. C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brunelli, J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The short pulse hierarchy</atitle><jtitle>Journal of mathematical physics</jtitle><date>2005-12-01</date><risdate>2005</risdate><volume>46</volume><issue>12</issue><spage>123507</spage><epage>123507-9</epage><pages>123507-123507-9</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We study a new hierarchy of equations containing the short pulse equation, which describes the evolution of very short pulses in nonlinear media, and the elastic beam equation, which describes nonlinear transverse oscillations of elastic beams under tension. We show that the hierarchy of equations is integrable. We obtain the two compatible Hamiltonian structures. We construct an infinite series of both local and nonlocal conserved charges. A Lax description is presented for both systems. For the elastic beam equations we also obtain a nonstandard Lax representation.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2146189</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2005-12, Vol.46 (12), p.123507-123507-9
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_2146189
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
EVOLUTION
Exact sciences and technology
HAMILTONIANS
INTEGRAL CALCULUS
LAX THEOREM
Mathematical methods in physics
Mathematics
NONLINEAR PROBLEMS
OSCILLATIONS
Physics
PULSES
SCHROEDINGER EQUATION
Sciences and techniques of general use
title The short pulse hierarchy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20short%20pulse%20hierarchy&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Brunelli,%20J.%20C.&rft.date=2005-12-01&rft.volume=46&rft.issue=12&rft.spage=123507&rft.epage=123507-9&rft.pages=123507-123507-9&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.2146189&rft_dat=%3Cscitation_osti_%3Ejmp%3C/scitation_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-9b9bf1b7d99bd167bb3d579bb50cb056a203ad82446f9b8c950f43dbe5c4b5a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true