Loading…

Classification of integrable two-component Hamiltonian systems of hydrodynamic type in 2 + 1 dimensions

Hamiltonian systems of hydrodynamic type occur in a wide range of applications including fluid dynamics, the Whitham averaging procedure, and the theory of Frobenius manifolds. In 1 + 1 dimensions, the requirement of the integrability of such systems by the generalised hodograph transform implies th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2011-07, Vol.52 (7), p.073505-073505-28
Main Authors: Ferapontov, E. V., Odesskii, A. V., Stoilov, N. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hamiltonian systems of hydrodynamic type occur in a wide range of applications including fluid dynamics, the Whitham averaging procedure, and the theory of Frobenius manifolds. In 1 + 1 dimensions, the requirement of the integrability of such systems by the generalised hodograph transform implies that integrable Hamiltonians depend on a certain number of arbitrary functions of two variables. On the contrary, in 2 + 1 dimensions the requirement of the integrability by the method of hydrodynamic reductions, which is a natural analogue of the generalised hodograph transform in higher dimensions, leads to finite-dimensional moduli spaces of integrable Hamiltonians. In this paper we classify integrable two-component Hamiltonian systems of hydrodynamic type for all existing classes of differential-geometric Poisson brackets in 2D, establishing a parametrisation of integrable Hamiltonians via elliptic/hypergeometric functions. Our approach is based on the Godunov-type representation of Hamiltonian systems, and utilises a novel construction of Godunov's systems in terms of generalised hypergeometric functions.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.3602081