Loading…
Binary jumps in continuum. II. Non-equilibrium process and a Vlasov-type scaling limit
Let Γ denote the space of all locally finite subsets (configurations) in \documentclass[12pt]{minimal}\begin{document}$\mathbb {R}^d$\end{document} R d . A stochastic dynamics of binary jumps in continuum is a Markov process on Γ in which pairs of particles simultaneously hop over \documentclass[12p...
Saved in:
Published in: | Journal of mathematical physics 2011-11, Vol.52 (11), p.113301-113301-27 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let Γ denote the space of all locally finite subsets (configurations) in
\documentclass[12pt]{minimal}\begin{document}$\mathbb {R}^d$\end{document}
R
d
. A stochastic dynamics of binary jumps in continuum is a Markov process on Γ in which pairs of particles simultaneously hop over
\documentclass[12pt]{minimal}\begin{document}$\mathbb {R}^d$\end{document}
R
d
. We discuss a non-equilibrium dynamics of binary jumps. We prove the existence of an evolution of correlation functions on a finite time interval. We also show that a Vlasov-type mesoscopic scaling for such a dynamics leads to a generalized Boltzmann nonlinear equation for the particle density. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.3657345 |