Loading…
Estimation parameters using Bisquare weighted robust ridge regression BRLTS estimator in the presence of multicollinearity and outliers
This study presents an improvement to robust ridge regression estimator. We proposed two methods Bisquare ridge least trimmed squares (BRLTS) and Bisquare ridge least absolute value (BRLAV) based on ridge least trimmed squares (RLTS) and ridge least absolute value (RLAV), respectively. We compared t...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study presents an improvement to robust ridge regression estimator. We proposed two methods Bisquare ridge least trimmed squares (BRLTS) and Bisquare ridge least absolute value (BRLAV) based on ridge least trimmed squares (RLTS) and ridge least absolute value (RLAV), respectively. We compared these methods with existing estimators, namely ordinary least squares (OLS) and Huber ridge regression (HRID) using three criteria: Bias, Root Mean Square Error (RMSE) and Standard Error (SE) to estimate the parameters coefficients. The results of Bisquare ridge least trimmed squares (BRLTS) and Bisquare ridge least absolute value (BRLAV) are compared with existing methods using real data and simulation study. The empirical evidence shows that the results obtain from the BRLTS are the best among the three estimators followed by BRLAV with the least value of the RMSE for the different disturbance distributions and degrees of multicollinearity. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4954633 |