Loading…
Dynamics and rheology of finitely extensible polymer coils: An overview
One contemporary research issue in non-Newtonian fluid mechanics is to accurately and effectively model viscoelastic polymer flow of practical relevance. In the past several years, we have been working on the formulation of a finitely extensible coil model for polymer flow, particularly including th...
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One contemporary research issue in non-Newtonian fluid mechanics is to accurately and effectively model viscoelastic polymer flow of practical relevance. In the past several years, we have been working on the formulation of a finitely extensible coil model for polymer flow, particularly including these elements: (1) decoupled equations for kinematical and dynamical variables, (2) logarithmic relaxation at large deformation, (3) rotational retardation, (4) controllable straining, and (5) finite stretch. In this paper, we provide a constructive overview of this nonlinear coil formulation focusing on integration of these elements in a single, unified constitutive model with a minimal number of model parameters that are linked with corresponding physical processes. We also use this opportunity to share the rationale and thought process in the model development. In one particular implement of the general formulation, three parameters are used to tackle with the principal dynamics of a deforming polymer coil: one for finite stretch dictated by a ceiling stretch of the coil, the second one for rotational recovery/retardation, and the third one for adjusting stretch hardening of the rubbery coil. The new model, even in a single mode, is able to simultaneously predict practical material functions in simple shear and coaxial extension and to fit well to representative experimental data. Particularly in the steady-state (or quasi-steady state) flow case, a nearly closed-form stress to velocity gradient relationship can be derived with which shear thinning and elongational thickening can be simultaneously considered while computational advantages of a classical GNF model is retained. The model also fits reasonably well to representative experimental transient data for both shear and extension. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4982976 |