Loading…

Energy loss of terahertz electromagnetic waves by nano-sized connections in near-self-complementary metallic checkerboard patterns

The design of a self-complementary metallic checkerboard pattern achieves broadband, dispersion-less, and maximized absorption, concentrating in deep subwavelength resistive connections between squares, without any theoretical limitation on the energy absorbing area. Here, we experimentally and nume...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2017-08, Vol.122 (6)
Main Authors: Takano, Keisuke, Tanaka, Yoku, Moreno, Gabriel, Chahadih, Abdallah, Ghaddar, Abbas, Han, Xiang-Lei, Vaurette, François, Nakata, Yosuke, Miyamaru, Fumiaki, Nakajima, Makoto, Hangyo, Masanori, Akalin, Tahsin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The design of a self-complementary metallic checkerboard pattern achieves broadband, dispersion-less, and maximized absorption, concentrating in deep subwavelength resistive connections between squares, without any theoretical limitation on the energy absorbing area. Here, we experimentally and numerically investigate the electromagnetic response in the limit of extremely small connections. We show that finite conductivity and randomness in a near-self-complementary checkerboard pattern play a crucial role in producing a frequency-independent energy loss in the terahertz frequency region. Here, metals behave like an almost perfect conductor. When the checkerboard pattern approaches the perfect self-complementary pattern, the perfect conductor approximation spontaneously breaks down, owing to the finite conductivity at the nano-scale connection, leading to broadband absorption. It is also shown that the random connections between metallic squares also lead to broadband and maximized energy loss through scattering loss, similar to finite conductivity.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4997882