Loading…
Energy loss of terahertz electromagnetic waves by nano-sized connections in near-self-complementary metallic checkerboard patterns
The design of a self-complementary metallic checkerboard pattern achieves broadband, dispersion-less, and maximized absorption, concentrating in deep subwavelength resistive connections between squares, without any theoretical limitation on the energy absorbing area. Here, we experimentally and nume...
Saved in:
Published in: | Journal of applied physics 2017-08, Vol.122 (6) |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The design of a self-complementary metallic checkerboard pattern achieves broadband, dispersion-less, and maximized absorption, concentrating in deep subwavelength resistive connections between squares, without any theoretical limitation on the energy absorbing area. Here, we experimentally and numerically investigate the electromagnetic response in the limit of extremely small connections. We show that finite conductivity and randomness in a near-self-complementary checkerboard pattern play a crucial role in producing a frequency-independent energy loss in the terahertz frequency region. Here, metals behave like an almost perfect conductor. When the checkerboard pattern approaches the perfect self-complementary pattern, the perfect conductor approximation spontaneously breaks down, owing to the finite conductivity at the nano-scale connection, leading to broadband absorption. It is also shown that the random connections between metallic squares also lead to broadband and maximized energy loss through scattering loss, similar to finite conductivity. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4997882 |