Loading…

Star-supermagic labeling on helm graph and Sn ⊙ K¯m

A finite simple graph G = (V, E) admits an H-covering if every edge of G belongs to a subgraph of G isomorphic to H. We said G to be an H-magic if there exists a total labeling f: V (G) ∪ E(G) → {1,2,…, |V(G)| + |E(G)|}, such that for each subgraph H′ = (V′, E′) of G isomorphic to H, the magic sum m...

Full description

Saved in:
Bibliographic Details
Main Authors: Roswitha, M., Martini, T. S., Dwiningsih, S.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A finite simple graph G = (V, E) admits an H-covering if every edge of G belongs to a subgraph of G isomorphic to H. We said G to be an H-magic if there exists a total labeling f: V (G) ∪ E(G) → {1,2,…, |V(G)| + |E(G)|}, such that for each subgraph H′ = (V′, E′) of G isomorphic to H, the magic sum m (f) = Σv∈V′ f(v) + Σe∈E′ f(e). Then, G is H-supermagic if f(V) = {1,2,…,|V|}. This research provides star-supermagicness on helm graph and Sn ⊙ K¯m.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.5064191