Loading…

III–V nanowire array telecom lasers on (001) silicon-on-insulator photonic platforms

III–V nanowires have recently gained attention as a promising approach to enable monolithic integration of ultracompact lasers on silicon. However, III–V nanowires typically grow only along ⟨111⟩ directions, and thus, it is challenging to integrate nanowire lasers on standard silicon photonic platfo...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2019-11, Vol.115 (21)
Main Authors: Kim, Hyunseok, Chang, Ting-Yuan, Lee, Wook-Jae, Huffaker, Diana L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:III–V nanowires have recently gained attention as a promising approach to enable monolithic integration of ultracompact lasers on silicon. However, III–V nanowires typically grow only along ⟨111⟩ directions, and thus, it is challenging to integrate nanowire lasers on standard silicon photonic platforms that utilize (001) silicon-on-insulator (SOI) substrates. Here, we propose III–V nanowire lasers on (001) silicon photonic platforms, which are enabled by forming one-dimensional nanowire arrays on (111) sidewalls. The one-dimensional photonic crystal laser cavity has a high Q factor >70 000 with a small footprint of ∼7.2 × 1.0 μm2, and the lasing wavelengths can be tuned to cover the entire telecom bands by adjusting the nanowire geometry. These nanowire lasers can be coupled to SOI waveguides with a coupling efficiency > 40% while maintaining a sufficiently high Q factor ∼18 000, which will be beneficial for low-threshold and energy-efficient operations. Therefore, the proposed nanowire lasers could be a stepping stone for ultracompact lasers compatible with standard silicon photonic platforms.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.5126721