Loading…
III–V nanowire array telecom lasers on (001) silicon-on-insulator photonic platforms
III–V nanowires have recently gained attention as a promising approach to enable monolithic integration of ultracompact lasers on silicon. However, III–V nanowires typically grow only along ⟨111⟩ directions, and thus, it is challenging to integrate nanowire lasers on standard silicon photonic platfo...
Saved in:
Published in: | Applied physics letters 2019-11, Vol.115 (21) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c362t-adad982fbaaa82d56c46ba3b24cfe5c66f566153aa4391076f1ec5eb598bff793 |
---|---|
cites | cdi_FETCH-LOGICAL-c362t-adad982fbaaa82d56c46ba3b24cfe5c66f566153aa4391076f1ec5eb598bff793 |
container_end_page | |
container_issue | 21 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 115 |
creator | Kim, Hyunseok Chang, Ting-Yuan Lee, Wook-Jae Huffaker, Diana L. |
description | III–V nanowires have recently gained attention as a promising approach to enable monolithic integration of ultracompact lasers on silicon. However, III–V nanowires typically grow only along ⟨111⟩ directions, and thus, it is challenging to integrate nanowire lasers on standard silicon photonic platforms that utilize (001) silicon-on-insulator (SOI) substrates. Here, we propose III–V nanowire lasers on (001) silicon photonic platforms, which are enabled by forming one-dimensional nanowire arrays on (111) sidewalls. The one-dimensional photonic crystal laser cavity has a high Q factor >70 000 with a small footprint of ∼7.2 × 1.0 μm2, and the lasing wavelengths can be tuned to cover the entire telecom bands by adjusting the nanowire geometry. These nanowire lasers can be coupled to SOI waveguides with a coupling efficiency > 40% while maintaining a sufficiently high Q factor ∼18 000, which will be beneficial for low-threshold and energy-efficient operations. Therefore, the proposed nanowire lasers could be a stepping stone for ultracompact lasers compatible with standard silicon photonic platforms. |
doi_str_mv | 10.1063/1.5126721 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5126721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315629601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-adad982fbaaa82d56c46ba3b24cfe5c66f566153aa4391076f1ec5eb598bff793</originalsourceid><addsrcrecordid>eNqd0M1KAzEQB_AgCtbqwTcIeLHC1kzSZLtHKX4sFLxor8tsNsGUbbImW6U338E39ElcqeBdGBgGfswwf0LOgU2BKXENUwlc5RwOyAhYnmcCYH5IRowxkalCwjE5SWk9jJILMSKrsiy_Pj5X1KMP7y4aijHijvamNTpsaIvJxESDp5eMwYQm1zodfDaU82nbYh8i7V5CH7zTtBtmG-ImnZIji20yZ799TJ7vbp8WD9ny8b5c3CwzLRTvM2ywKebc1og4541UeqZqFDWfaWukVspKpUAKxJkohneUBaOlqWUxr63NCzEmF_u9XQyvW5P6ah220Q8nKy5AKl4oBoOa7JWOIaVobNVFt8G4q4BVP7FVUP3GNtirvU3a9di74P-H30L8g1XXWPENcbd8Aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315629601</pqid></control><display><type>article</type><title>III–V nanowire array telecom lasers on (001) silicon-on-insulator photonic platforms</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Kim, Hyunseok ; Chang, Ting-Yuan ; Lee, Wook-Jae ; Huffaker, Diana L.</creator><creatorcontrib>Kim, Hyunseok ; Chang, Ting-Yuan ; Lee, Wook-Jae ; Huffaker, Diana L.</creatorcontrib><description>III–V nanowires have recently gained attention as a promising approach to enable monolithic integration of ultracompact lasers on silicon. However, III–V nanowires typically grow only along ⟨111⟩ directions, and thus, it is challenging to integrate nanowire lasers on standard silicon photonic platforms that utilize (001) silicon-on-insulator (SOI) substrates. Here, we propose III–V nanowire lasers on (001) silicon photonic platforms, which are enabled by forming one-dimensional nanowire arrays on (111) sidewalls. The one-dimensional photonic crystal laser cavity has a high Q factor >70 000 with a small footprint of ∼7.2 × 1.0 μm2, and the lasing wavelengths can be tuned to cover the entire telecom bands by adjusting the nanowire geometry. These nanowire lasers can be coupled to SOI waveguides with a coupling efficiency > 40% while maintaining a sufficiently high Q factor ∼18 000, which will be beneficial for low-threshold and energy-efficient operations. Therefore, the proposed nanowire lasers could be a stepping stone for ultracompact lasers compatible with standard silicon photonic platforms.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5126721</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Laser arrays ; Lasers ; Nanowires ; Photonic crystals ; Platforms ; Q factors ; Silicon substrates ; Telecommunications ; Waveguides</subject><ispartof>Applied physics letters, 2019-11, Vol.115 (21)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-adad982fbaaa82d56c46ba3b24cfe5c66f566153aa4391076f1ec5eb598bff793</citedby><cites>FETCH-LOGICAL-c362t-adad982fbaaa82d56c46ba3b24cfe5c66f566153aa4391076f1ec5eb598bff793</cites><orcidid>0000-0003-3091-8413 ; 0000-0001-8430-4797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5126721$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27923,27924,76254</link.rule.ids></links><search><creatorcontrib>Kim, Hyunseok</creatorcontrib><creatorcontrib>Chang, Ting-Yuan</creatorcontrib><creatorcontrib>Lee, Wook-Jae</creatorcontrib><creatorcontrib>Huffaker, Diana L.</creatorcontrib><title>III–V nanowire array telecom lasers on (001) silicon-on-insulator photonic platforms</title><title>Applied physics letters</title><description>III–V nanowires have recently gained attention as a promising approach to enable monolithic integration of ultracompact lasers on silicon. However, III–V nanowires typically grow only along ⟨111⟩ directions, and thus, it is challenging to integrate nanowire lasers on standard silicon photonic platforms that utilize (001) silicon-on-insulator (SOI) substrates. Here, we propose III–V nanowire lasers on (001) silicon photonic platforms, which are enabled by forming one-dimensional nanowire arrays on (111) sidewalls. The one-dimensional photonic crystal laser cavity has a high Q factor >70 000 with a small footprint of ∼7.2 × 1.0 μm2, and the lasing wavelengths can be tuned to cover the entire telecom bands by adjusting the nanowire geometry. These nanowire lasers can be coupled to SOI waveguides with a coupling efficiency > 40% while maintaining a sufficiently high Q factor ∼18 000, which will be beneficial for low-threshold and energy-efficient operations. Therefore, the proposed nanowire lasers could be a stepping stone for ultracompact lasers compatible with standard silicon photonic platforms.</description><subject>Applied physics</subject><subject>Laser arrays</subject><subject>Lasers</subject><subject>Nanowires</subject><subject>Photonic crystals</subject><subject>Platforms</subject><subject>Q factors</subject><subject>Silicon substrates</subject><subject>Telecommunications</subject><subject>Waveguides</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqd0M1KAzEQB_AgCtbqwTcIeLHC1kzSZLtHKX4sFLxor8tsNsGUbbImW6U338E39ElcqeBdGBgGfswwf0LOgU2BKXENUwlc5RwOyAhYnmcCYH5IRowxkalCwjE5SWk9jJILMSKrsiy_Pj5X1KMP7y4aijHijvamNTpsaIvJxESDp5eMwYQm1zodfDaU82nbYh8i7V5CH7zTtBtmG-ImnZIji20yZ799TJ7vbp8WD9ny8b5c3CwzLRTvM2ywKebc1og4541UeqZqFDWfaWukVspKpUAKxJkohneUBaOlqWUxr63NCzEmF_u9XQyvW5P6ah220Q8nKy5AKl4oBoOa7JWOIaVobNVFt8G4q4BVP7FVUP3GNtirvU3a9di74P-H30L8g1XXWPENcbd8Aw</recordid><startdate>20191118</startdate><enddate>20191118</enddate><creator>Kim, Hyunseok</creator><creator>Chang, Ting-Yuan</creator><creator>Lee, Wook-Jae</creator><creator>Huffaker, Diana L.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3091-8413</orcidid><orcidid>https://orcid.org/0000-0001-8430-4797</orcidid></search><sort><creationdate>20191118</creationdate><title>III–V nanowire array telecom lasers on (001) silicon-on-insulator photonic platforms</title><author>Kim, Hyunseok ; Chang, Ting-Yuan ; Lee, Wook-Jae ; Huffaker, Diana L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-adad982fbaaa82d56c46ba3b24cfe5c66f566153aa4391076f1ec5eb598bff793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Laser arrays</topic><topic>Lasers</topic><topic>Nanowires</topic><topic>Photonic crystals</topic><topic>Platforms</topic><topic>Q factors</topic><topic>Silicon substrates</topic><topic>Telecommunications</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyunseok</creatorcontrib><creatorcontrib>Chang, Ting-Yuan</creatorcontrib><creatorcontrib>Lee, Wook-Jae</creatorcontrib><creatorcontrib>Huffaker, Diana L.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hyunseok</au><au>Chang, Ting-Yuan</au><au>Lee, Wook-Jae</au><au>Huffaker, Diana L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>III–V nanowire array telecom lasers on (001) silicon-on-insulator photonic platforms</atitle><jtitle>Applied physics letters</jtitle><date>2019-11-18</date><risdate>2019</risdate><volume>115</volume><issue>21</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>III–V nanowires have recently gained attention as a promising approach to enable monolithic integration of ultracompact lasers on silicon. However, III–V nanowires typically grow only along ⟨111⟩ directions, and thus, it is challenging to integrate nanowire lasers on standard silicon photonic platforms that utilize (001) silicon-on-insulator (SOI) substrates. Here, we propose III–V nanowire lasers on (001) silicon photonic platforms, which are enabled by forming one-dimensional nanowire arrays on (111) sidewalls. The one-dimensional photonic crystal laser cavity has a high Q factor >70 000 with a small footprint of ∼7.2 × 1.0 μm2, and the lasing wavelengths can be tuned to cover the entire telecom bands by adjusting the nanowire geometry. These nanowire lasers can be coupled to SOI waveguides with a coupling efficiency > 40% while maintaining a sufficiently high Q factor ∼18 000, which will be beneficial for low-threshold and energy-efficient operations. Therefore, the proposed nanowire lasers could be a stepping stone for ultracompact lasers compatible with standard silicon photonic platforms.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5126721</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3091-8413</orcidid><orcidid>https://orcid.org/0000-0001-8430-4797</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2019-11, Vol.115 (21) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_5126721 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建) |
subjects | Applied physics Laser arrays Lasers Nanowires Photonic crystals Platforms Q factors Silicon substrates Telecommunications Waveguides |
title | III–V nanowire array telecom lasers on (001) silicon-on-insulator photonic platforms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A04%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=III%E2%80%93V%20nanowire%20array%20telecom%20lasers%20on%20(001)%20silicon-on-insulator%20photonic%20platforms&rft.jtitle=Applied%20physics%20letters&rft.au=Kim,%20Hyunseok&rft.date=2019-11-18&rft.volume=115&rft.issue=21&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5126721&rft_dat=%3Cproquest_scita%3E2315629601%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-adad982fbaaa82d56c46ba3b24cfe5c66f566153aa4391076f1ec5eb598bff793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2315629601&rft_id=info:pmid/&rfr_iscdi=true |