Loading…

III–V nanowire array telecom lasers on (001) silicon-on-insulator photonic platforms

III–V nanowires have recently gained attention as a promising approach to enable monolithic integration of ultracompact lasers on silicon. However, III–V nanowires typically grow only along ⟨111⟩ directions, and thus, it is challenging to integrate nanowire lasers on standard silicon photonic platfo...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2019-11, Vol.115 (21)
Main Authors: Kim, Hyunseok, Chang, Ting-Yuan, Lee, Wook-Jae, Huffaker, Diana L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-adad982fbaaa82d56c46ba3b24cfe5c66f566153aa4391076f1ec5eb598bff793
cites cdi_FETCH-LOGICAL-c362t-adad982fbaaa82d56c46ba3b24cfe5c66f566153aa4391076f1ec5eb598bff793
container_end_page
container_issue 21
container_start_page
container_title Applied physics letters
container_volume 115
creator Kim, Hyunseok
Chang, Ting-Yuan
Lee, Wook-Jae
Huffaker, Diana L.
description III–V nanowires have recently gained attention as a promising approach to enable monolithic integration of ultracompact lasers on silicon. However, III–V nanowires typically grow only along ⟨111⟩ directions, and thus, it is challenging to integrate nanowire lasers on standard silicon photonic platforms that utilize (001) silicon-on-insulator (SOI) substrates. Here, we propose III–V nanowire lasers on (001) silicon photonic platforms, which are enabled by forming one-dimensional nanowire arrays on (111) sidewalls. The one-dimensional photonic crystal laser cavity has a high Q factor >70 000 with a small footprint of ∼7.2 × 1.0 μm2, and the lasing wavelengths can be tuned to cover the entire telecom bands by adjusting the nanowire geometry. These nanowire lasers can be coupled to SOI waveguides with a coupling efficiency > 40% while maintaining a sufficiently high Q factor ∼18 000, which will be beneficial for low-threshold and energy-efficient operations. Therefore, the proposed nanowire lasers could be a stepping stone for ultracompact lasers compatible with standard silicon photonic platforms.
doi_str_mv 10.1063/1.5126721
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_5126721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315629601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-adad982fbaaa82d56c46ba3b24cfe5c66f566153aa4391076f1ec5eb598bff793</originalsourceid><addsrcrecordid>eNqd0M1KAzEQB_AgCtbqwTcIeLHC1kzSZLtHKX4sFLxor8tsNsGUbbImW6U338E39ElcqeBdGBgGfswwf0LOgU2BKXENUwlc5RwOyAhYnmcCYH5IRowxkalCwjE5SWk9jJILMSKrsiy_Pj5X1KMP7y4aijHijvamNTpsaIvJxESDp5eMwYQm1zodfDaU82nbYh8i7V5CH7zTtBtmG-ImnZIji20yZ799TJ7vbp8WD9ny8b5c3CwzLRTvM2ywKebc1og4541UeqZqFDWfaWukVspKpUAKxJkohneUBaOlqWUxr63NCzEmF_u9XQyvW5P6ah220Q8nKy5AKl4oBoOa7JWOIaVobNVFt8G4q4BVP7FVUP3GNtirvU3a9di74P-H30L8g1XXWPENcbd8Aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315629601</pqid></control><display><type>article</type><title>III–V nanowire array telecom lasers on (001) silicon-on-insulator photonic platforms</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Kim, Hyunseok ; Chang, Ting-Yuan ; Lee, Wook-Jae ; Huffaker, Diana L.</creator><creatorcontrib>Kim, Hyunseok ; Chang, Ting-Yuan ; Lee, Wook-Jae ; Huffaker, Diana L.</creatorcontrib><description>III–V nanowires have recently gained attention as a promising approach to enable monolithic integration of ultracompact lasers on silicon. However, III–V nanowires typically grow only along ⟨111⟩ directions, and thus, it is challenging to integrate nanowire lasers on standard silicon photonic platforms that utilize (001) silicon-on-insulator (SOI) substrates. Here, we propose III–V nanowire lasers on (001) silicon photonic platforms, which are enabled by forming one-dimensional nanowire arrays on (111) sidewalls. The one-dimensional photonic crystal laser cavity has a high Q factor &gt;70 000 with a small footprint of ∼7.2 × 1.0 μm2, and the lasing wavelengths can be tuned to cover the entire telecom bands by adjusting the nanowire geometry. These nanowire lasers can be coupled to SOI waveguides with a coupling efficiency &gt; 40% while maintaining a sufficiently high Q factor ∼18 000, which will be beneficial for low-threshold and energy-efficient operations. Therefore, the proposed nanowire lasers could be a stepping stone for ultracompact lasers compatible with standard silicon photonic platforms.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5126721</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Laser arrays ; Lasers ; Nanowires ; Photonic crystals ; Platforms ; Q factors ; Silicon substrates ; Telecommunications ; Waveguides</subject><ispartof>Applied physics letters, 2019-11, Vol.115 (21)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-adad982fbaaa82d56c46ba3b24cfe5c66f566153aa4391076f1ec5eb598bff793</citedby><cites>FETCH-LOGICAL-c362t-adad982fbaaa82d56c46ba3b24cfe5c66f566153aa4391076f1ec5eb598bff793</cites><orcidid>0000-0003-3091-8413 ; 0000-0001-8430-4797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5126721$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27923,27924,76254</link.rule.ids></links><search><creatorcontrib>Kim, Hyunseok</creatorcontrib><creatorcontrib>Chang, Ting-Yuan</creatorcontrib><creatorcontrib>Lee, Wook-Jae</creatorcontrib><creatorcontrib>Huffaker, Diana L.</creatorcontrib><title>III–V nanowire array telecom lasers on (001) silicon-on-insulator photonic platforms</title><title>Applied physics letters</title><description>III–V nanowires have recently gained attention as a promising approach to enable monolithic integration of ultracompact lasers on silicon. However, III–V nanowires typically grow only along ⟨111⟩ directions, and thus, it is challenging to integrate nanowire lasers on standard silicon photonic platforms that utilize (001) silicon-on-insulator (SOI) substrates. Here, we propose III–V nanowire lasers on (001) silicon photonic platforms, which are enabled by forming one-dimensional nanowire arrays on (111) sidewalls. The one-dimensional photonic crystal laser cavity has a high Q factor &gt;70 000 with a small footprint of ∼7.2 × 1.0 μm2, and the lasing wavelengths can be tuned to cover the entire telecom bands by adjusting the nanowire geometry. These nanowire lasers can be coupled to SOI waveguides with a coupling efficiency &gt; 40% while maintaining a sufficiently high Q factor ∼18 000, which will be beneficial for low-threshold and energy-efficient operations. Therefore, the proposed nanowire lasers could be a stepping stone for ultracompact lasers compatible with standard silicon photonic platforms.</description><subject>Applied physics</subject><subject>Laser arrays</subject><subject>Lasers</subject><subject>Nanowires</subject><subject>Photonic crystals</subject><subject>Platforms</subject><subject>Q factors</subject><subject>Silicon substrates</subject><subject>Telecommunications</subject><subject>Waveguides</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqd0M1KAzEQB_AgCtbqwTcIeLHC1kzSZLtHKX4sFLxor8tsNsGUbbImW6U338E39ElcqeBdGBgGfswwf0LOgU2BKXENUwlc5RwOyAhYnmcCYH5IRowxkalCwjE5SWk9jJILMSKrsiy_Pj5X1KMP7y4aijHijvamNTpsaIvJxESDp5eMwYQm1zodfDaU82nbYh8i7V5CH7zTtBtmG-ImnZIji20yZ799TJ7vbp8WD9ny8b5c3CwzLRTvM2ywKebc1og4541UeqZqFDWfaWukVspKpUAKxJkohneUBaOlqWUxr63NCzEmF_u9XQyvW5P6ah220Q8nKy5AKl4oBoOa7JWOIaVobNVFt8G4q4BVP7FVUP3GNtirvU3a9di74P-H30L8g1XXWPENcbd8Aw</recordid><startdate>20191118</startdate><enddate>20191118</enddate><creator>Kim, Hyunseok</creator><creator>Chang, Ting-Yuan</creator><creator>Lee, Wook-Jae</creator><creator>Huffaker, Diana L.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3091-8413</orcidid><orcidid>https://orcid.org/0000-0001-8430-4797</orcidid></search><sort><creationdate>20191118</creationdate><title>III–V nanowire array telecom lasers on (001) silicon-on-insulator photonic platforms</title><author>Kim, Hyunseok ; Chang, Ting-Yuan ; Lee, Wook-Jae ; Huffaker, Diana L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-adad982fbaaa82d56c46ba3b24cfe5c66f566153aa4391076f1ec5eb598bff793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Laser arrays</topic><topic>Lasers</topic><topic>Nanowires</topic><topic>Photonic crystals</topic><topic>Platforms</topic><topic>Q factors</topic><topic>Silicon substrates</topic><topic>Telecommunications</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyunseok</creatorcontrib><creatorcontrib>Chang, Ting-Yuan</creatorcontrib><creatorcontrib>Lee, Wook-Jae</creatorcontrib><creatorcontrib>Huffaker, Diana L.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hyunseok</au><au>Chang, Ting-Yuan</au><au>Lee, Wook-Jae</au><au>Huffaker, Diana L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>III–V nanowire array telecom lasers on (001) silicon-on-insulator photonic platforms</atitle><jtitle>Applied physics letters</jtitle><date>2019-11-18</date><risdate>2019</risdate><volume>115</volume><issue>21</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>III–V nanowires have recently gained attention as a promising approach to enable monolithic integration of ultracompact lasers on silicon. However, III–V nanowires typically grow only along ⟨111⟩ directions, and thus, it is challenging to integrate nanowire lasers on standard silicon photonic platforms that utilize (001) silicon-on-insulator (SOI) substrates. Here, we propose III–V nanowire lasers on (001) silicon photonic platforms, which are enabled by forming one-dimensional nanowire arrays on (111) sidewalls. The one-dimensional photonic crystal laser cavity has a high Q factor &gt;70 000 with a small footprint of ∼7.2 × 1.0 μm2, and the lasing wavelengths can be tuned to cover the entire telecom bands by adjusting the nanowire geometry. These nanowire lasers can be coupled to SOI waveguides with a coupling efficiency &gt; 40% while maintaining a sufficiently high Q factor ∼18 000, which will be beneficial for low-threshold and energy-efficient operations. Therefore, the proposed nanowire lasers could be a stepping stone for ultracompact lasers compatible with standard silicon photonic platforms.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5126721</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3091-8413</orcidid><orcidid>https://orcid.org/0000-0001-8430-4797</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2019-11, Vol.115 (21)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_1_5126721
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
subjects Applied physics
Laser arrays
Lasers
Nanowires
Photonic crystals
Platforms
Q factors
Silicon substrates
Telecommunications
Waveguides
title III–V nanowire array telecom lasers on (001) silicon-on-insulator photonic platforms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A04%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=III%E2%80%93V%20nanowire%20array%20telecom%20lasers%20on%20(001)%20silicon-on-insulator%20photonic%20platforms&rft.jtitle=Applied%20physics%20letters&rft.au=Kim,%20Hyunseok&rft.date=2019-11-18&rft.volume=115&rft.issue=21&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5126721&rft_dat=%3Cproquest_scita%3E2315629601%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-adad982fbaaa82d56c46ba3b24cfe5c66f566153aa4391076f1ec5eb598bff793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2315629601&rft_id=info:pmid/&rfr_iscdi=true