Loading…
Metal/BaTiO3/β-Ga2O3 dielectric heterojunction diode with 5.7 MV/cm breakdown field
Wide and ultrawide bandgap semiconductors can provide excellent performance due to their high energy bandgap, which leads to breakdown electric fields that are more than an order of magnitude higher than conventional silicon electronics. In materials where p-type doping is not available, achieving t...
Saved in:
Published in: | Applied physics letters 2019-12, Vol.115 (25) |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wide and ultrawide bandgap semiconductors can provide excellent performance due to their high energy bandgap, which leads to breakdown electric fields that are more than an order of magnitude higher than conventional silicon electronics. In materials where p-type doping is not available, achieving this high breakdown field in a vertical diode or transistor is very challenging. We propose and demonstrate the use of dielectric heterojunctions that use extreme permittivity materials to achieve a high breakdown field in a unipolar device. We demonstrate the integration of a high permittivity material BaTiO3 with n-type β-Ga2O3 to enable a 5.7 MV/cm average electric field and a 7 MV/cm peak electric field at the device edge while maintaining forward conduction with relatively low on-resistance and voltage loss. The proposed dielectric heterojunction could enable improved design strategies to achieve theoretical device performance limits in wide and ultrawide bandgap semiconductors where bipolar doping is challenging. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.5130669 |