Loading…

Dimension-reduction of FPK equation via equivalent drift coefficient

The Fokker—Planck—Kolmogorov (FPK) equation plays an essential role in nonlinear stochastic dynamics. However, neither analytical nor numerical solution is available as yet to FPK equations for high-dimensional systems. In the present paper, the dimension reduction of FPK equation for systems excite...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical and applied mechanics letters 2014, Vol.4 (1), p.16-21, Article 013002
Main Authors: Chen, Jianbing, Lin, Peihui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Fokker—Planck—Kolmogorov (FPK) equation plays an essential role in nonlinear stochastic dynamics. However, neither analytical nor numerical solution is available as yet to FPK equations for high-dimensional systems. In the present paper, the dimension reduction of FPK equation for systems excited by additive white noise is studied. In the proposed method, probability density evolution method (PDEM), in which a decoupled generalized density evolution equation is solved, is employed to reproduce the equivalent flux of probability for the marginalized FPK equation. A further step of constructing an equivalent coefficient finally completes the dimension-reduction of FPK equation. Examples are illustrated to verify the proposed method.
ISSN:2095-0349
2095-0349
DOI:10.1063/2.1401302