Loading…
Self-induced ferroelectric 2-nm-thick Ge-doped HfO2 thin film applied to Ge nanowire ferroelectric gate-all-around field-effect transistor
This paper reports a self-induced ferroelectric 2-nm-thick Ge-doped HfO2 (Ge:HfO2) thin film. Ge thermal desorption, incorporation into HfO2, and further Ge:HfO2 crystallization were all performed through rapid thermal annealing simultaneously. The ferroelectric property of a 2-nm-thick Ge:HfO2/2-nm...
Saved in:
Published in: | Applied physics letters 2020-12, Vol.117 (26) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper reports a self-induced ferroelectric 2-nm-thick Ge-doped HfO2 (Ge:HfO2) thin film. Ge thermal desorption, incorporation into HfO2, and further Ge:HfO2 crystallization were all performed through rapid thermal annealing simultaneously. The ferroelectric property of a 2-nm-thick Ge:HfO2/2-nm-thick Al2O3 dielectric stack was confirmed using the polarization-electric field measurement. X-ray photoelectron spectroscopy was used to confirm that Ge bonded to HfO2 as Hf-germanates. Piezoresponse force microscopy was used to demonstrate the piezoelectric property of Ge:HfO2/Al2O3. Furthermore, a dielectric stack of Ge:HfO2/Al2O3 was applied as a gate insulator in a Ge nanowire gate-all-around ferroelectric field-effect transistor (Ge NW Fe-GAAFET). The device exhibited a minimum steep-sub-threshold slope of 47 mV/dec, a high ION/IOFF ratio of >106, and low gate leakage current; moreover, it was free of a drain-induced barrier lowering effect. The proposed self-induced ferroelectric Ge:HfO2 Ge NW Fe-GAAFET is feasible for future ultra-low power integrated circuit applications. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0029628 |